mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
413 lines
12 KiB
FortranFixed
413 lines
12 KiB
FortranFixed
|
*DECK SOSEQS
|
||
|
SUBROUTINE SOSEQS (FNC, N, S, RTOLX, ATOLX, TOLF, IFLAG, MXIT,
|
||
|
+ NCJS, NSRRC, NSRI, IPRINT, FMAX, C, NC, B, P, TEMP, X, Y, FAC,
|
||
|
+ IS)
|
||
|
C***BEGIN PROLOGUE SOSEQS
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Subsidiary to SOS
|
||
|
C***LIBRARY SLATEC
|
||
|
C***TYPE SINGLE PRECISION (SOSEQS-S, DSOSEQ-D)
|
||
|
C***AUTHOR (UNKNOWN)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C SOSEQS solves a system of N simultaneous nonlinear equations.
|
||
|
C See the comments in the interfacing routine SOS for a more
|
||
|
C detailed description of some of the items in the calling list.
|
||
|
C
|
||
|
C ********************************************************************
|
||
|
C
|
||
|
C -INPUT-
|
||
|
C FNC -Function subprogram which evaluates the equations
|
||
|
C N -Number of equations
|
||
|
C S -Solution vector of initial guesses
|
||
|
C RTOLX-Relative error tolerance on solution components
|
||
|
C ATOLX-Absolute error tolerance on solution components
|
||
|
C TOLF-Residual error tolerance
|
||
|
C MXIT-Maximum number of allowable iterations.
|
||
|
C NCJS-Maximum number of consecutive iterative steps to perform
|
||
|
C using the same triangular Jacobian matrix approximation.
|
||
|
C NSRRC-Number of consecutive iterative steps for which the
|
||
|
C limiting precision accuracy test must be satisfied
|
||
|
C before the routine exits with IFLAG=4.
|
||
|
C NSRI-Number of consecutive iterative steps for which the
|
||
|
C diverging condition test must be satisfied before
|
||
|
C the routine exits with IFLAG=7.
|
||
|
C IPRINT-Internal printing parameter. You must set IPRINT=-1 if you
|
||
|
C want the intermediate solution iterates and a residual norm
|
||
|
C to be printed.
|
||
|
C C -Internal work array, dimensioned at least N*(N+1)/2.
|
||
|
C NC -Dimension of C array. NC .GE. N*(N+1)/2.
|
||
|
C B -Internal work array, dimensioned N.
|
||
|
C P -Internal work array, dimensioned N.
|
||
|
C TEMP-Internal work array, dimensioned N.
|
||
|
C X -Internal work array, dimensioned N.
|
||
|
C Y -Internal work array, dimensioned N.
|
||
|
C FAC -Internal work array, dimensioned N.
|
||
|
C IS -Internal work array, dimensioned N.
|
||
|
C
|
||
|
C -OUTPUT-
|
||
|
C S -Solution vector
|
||
|
C IFLAG-Status indicator flag
|
||
|
C MXIT-The actual number of iterations performed
|
||
|
C FMAX-Residual norm
|
||
|
C C -Upper unit triangular matrix which approximates the
|
||
|
C forward triangularization of the full Jacobian matrix.
|
||
|
C stored in a vector with dimension at least N*(N+1)/2.
|
||
|
C B -Contains the residuals (function values) divided
|
||
|
C by the corresponding components of the P vector
|
||
|
C P -Array used to store the partial derivatives. After
|
||
|
C each iteration P(K) contains the maximal derivative
|
||
|
C occurring in the K-th reduced equation.
|
||
|
C TEMP-Array used to store the previous solution iterate.
|
||
|
C X -Solution vector. Contains the values achieved on the
|
||
|
C last iteration loop upon exit from SOS.
|
||
|
C Y -Array containing the solution increments.
|
||
|
C FAC -Array containing factors used in computing numerical
|
||
|
C derivatives.
|
||
|
C IS -Records the pivotal information (column interchanges)
|
||
|
C
|
||
|
C **********************************************************************
|
||
|
C *** Three machine dependent parameters appear in this subroutine.
|
||
|
C
|
||
|
C *** The smallest positive magnitude, zero, is defined by the function
|
||
|
C *** routine R1MACH(1).
|
||
|
C
|
||
|
C *** URO, The computer unit roundoff value, is defined by R1MACH(3) for
|
||
|
C *** machines that round or R1MACH(4) for machines that truncate.
|
||
|
C *** URO is the smallest positive number such that 1.+URO .GT. 1.
|
||
|
C
|
||
|
C *** The output tape unit number, LOUN, is defined by the function
|
||
|
C *** I1MACH(2).
|
||
|
C **********************************************************************
|
||
|
C
|
||
|
C***SEE ALSO SOS
|
||
|
C***ROUTINES CALLED I1MACH, R1MACH, SOSSOL
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 801001 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900328 Added TYPE section. (WRB)
|
||
|
C***END PROLOGUE SOSEQS
|
||
|
C
|
||
|
C
|
||
|
DIMENSION S(*), C(NC), B(*), IS(*), P(*), TEMP(*), X(*), Y(*),
|
||
|
1 FAC(*)
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT SOSEQS
|
||
|
URO = R1MACH(4)
|
||
|
LOUN = I1MACH(2)
|
||
|
ZERO = R1MACH(1)
|
||
|
RE = MAX(RTOLX,URO)
|
||
|
SRURO = SQRT(URO)
|
||
|
C
|
||
|
IFLAG = 0
|
||
|
NP1 = N + 1
|
||
|
ICR = 0
|
||
|
IC = 0
|
||
|
ITRY = NCJS
|
||
|
YN1 = 0.
|
||
|
YN2 = 0.
|
||
|
YN3 = 0.
|
||
|
YNS = 0.
|
||
|
MIT = 0
|
||
|
FN1 = 0.
|
||
|
FN2 = 0.
|
||
|
FMXS = 0.
|
||
|
C
|
||
|
C INITIALIZE THE INTERCHANGE (PIVOTING) VECTOR AND
|
||
|
C SAVE THE CURRENT SOLUTION APPROXIMATION FOR FUTURE USE.
|
||
|
C
|
||
|
DO 10 K=1,N
|
||
|
IS(K) = K
|
||
|
X(K) = S(K)
|
||
|
TEMP(K) = X(K)
|
||
|
10 CONTINUE
|
||
|
C
|
||
|
C
|
||
|
C *****************************************
|
||
|
C **** BEGIN PRINCIPAL ITERATION LOOP ****
|
||
|
C *****************************************
|
||
|
C
|
||
|
DO 330 M=1,MXIT
|
||
|
C
|
||
|
DO 20 K=1,N
|
||
|
FAC(K) = SRURO
|
||
|
20 CONTINUE
|
||
|
C
|
||
|
30 KN = 1
|
||
|
FMAX = 0.
|
||
|
C
|
||
|
C
|
||
|
C ******** BEGIN SUBITERATION LOOP DEFINING THE LINEARIZATION OF EACH
|
||
|
C ******** EQUATION WHICH RESULTS IN THE CONSTRUCTION OF AN UPPER
|
||
|
C ******** TRIANGULAR MATRIX APPROXIMATING THE FORWARD
|
||
|
C ******** TRIANGULARIZATION OF THE FULL JACOBIAN MATRIX
|
||
|
C
|
||
|
DO 170 K=1,N
|
||
|
KM1 = K - 1
|
||
|
C
|
||
|
C BACK-SOLVE A TRIANGULAR LINEAR SYSTEM OBTAINING
|
||
|
C IMPROVED SOLUTION VALUES FOR K-1 OF THE VARIABLES
|
||
|
C FROM THE FIRST K-1 EQUATIONS. THESE VARIABLES ARE THEN
|
||
|
C ELIMINATED FROM THE K-TH EQUATION.
|
||
|
C
|
||
|
IF (KM1 .EQ. 0) GO TO 50
|
||
|
CALL SOSSOL(K, N, KM1, Y, C, B, KN)
|
||
|
DO 40 J=1,KM1
|
||
|
JS = IS(J)
|
||
|
X(JS) = TEMP(JS) + Y(J)
|
||
|
40 CONTINUE
|
||
|
C
|
||
|
C
|
||
|
C EVALUATE THE K-TH EQUATION AND THE INTERMEDIATE COMPUTATION
|
||
|
C FOR THE MAX NORM OF THE RESIDUAL VECTOR.
|
||
|
C
|
||
|
50 F = FNC(X,K)
|
||
|
FMAX = MAX(FMAX,ABS(F))
|
||
|
C
|
||
|
C IF WE WISH TO PERFORM SEVERAL ITERATIONS USING A FIXED
|
||
|
C FACTORIZATION OF AN APPROXIMATE JACOBIAN,WE NEED ONLY
|
||
|
C UPDATE THE CONSTANT VECTOR.
|
||
|
C
|
||
|
IF (ITRY .LT. NCJS) GO TO 160
|
||
|
C
|
||
|
C
|
||
|
IT = 0
|
||
|
C
|
||
|
C COMPUTE PARTIAL DERIVATIVES THAT ARE REQUIRED IN THE LINEARIZATION
|
||
|
C OF THE K-TH REDUCED EQUATION
|
||
|
C
|
||
|
DO 90 J=K,N
|
||
|
ITEM = IS(J)
|
||
|
HX = X(ITEM)
|
||
|
H = FAC(ITEM)*HX
|
||
|
IF (ABS(H) .LE. ZERO) H = FAC(ITEM)
|
||
|
X(ITEM) = HX + H
|
||
|
IF (KM1 .EQ. 0) GO TO 70
|
||
|
Y(J) = H
|
||
|
CALL SOSSOL(K, N, J, Y, C, B, KN)
|
||
|
DO 60 L=1,KM1
|
||
|
LS = IS(L)
|
||
|
X(LS) = TEMP(LS) + Y(L)
|
||
|
60 CONTINUE
|
||
|
70 FP = FNC(X,K)
|
||
|
X(ITEM) = HX
|
||
|
FDIF = FP - F
|
||
|
IF (ABS(FDIF) .GT. URO*ABS(F)) GO TO 80
|
||
|
FDIF = 0.
|
||
|
IT = IT + 1
|
||
|
80 P(J) = FDIF/H
|
||
|
90 CONTINUE
|
||
|
C
|
||
|
IF (IT .LE. (N-K)) GO TO 110
|
||
|
C
|
||
|
C ALL COMPUTED PARTIAL DERIVATIVES OF THE K-TH EQUATION
|
||
|
C ARE EFFECTIVELY ZERO.TRY LARGER PERTURBATIONS OF THE
|
||
|
C INDEPENDENT VARIABLES.
|
||
|
C
|
||
|
DO 100 J=K,N
|
||
|
ISJ = IS(J)
|
||
|
FACT = 100.*FAC(ISJ)
|
||
|
IF (FACT .GT. 1.E+10) GO TO 340
|
||
|
FAC(ISJ) = FACT
|
||
|
100 CONTINUE
|
||
|
GO TO 30
|
||
|
C
|
||
|
110 IF (K .EQ. N) GO TO 160
|
||
|
C
|
||
|
C ACHIEVE A PIVOTING EFFECT BY CHOOSING THE MAXIMAL DERIVATIVE
|
||
|
C ELEMENT
|
||
|
C
|
||
|
PMAX = 0.
|
||
|
DO 120 J=K,N
|
||
|
TEST = ABS(P(J))
|
||
|
IF (TEST .LE. PMAX) GO TO 120
|
||
|
PMAX = TEST
|
||
|
ISV = J
|
||
|
120 CONTINUE
|
||
|
IF (PMAX .EQ. 0.) GO TO 340
|
||
|
C
|
||
|
C SET UP THE COEFFICIENTS FOR THE K-TH ROW OF THE TRIANGULAR
|
||
|
C LINEAR SYSTEM AND SAVE THE PARTIAL DERIVATIVE OF
|
||
|
C LARGEST MAGNITUDE
|
||
|
C
|
||
|
PMAX = P(ISV)
|
||
|
KK = KN
|
||
|
DO 140 J=K,N
|
||
|
IF (J .EQ. ISV) GO TO 130
|
||
|
C(KK) = -P(J)/PMAX
|
||
|
130 KK = KK + 1
|
||
|
140 CONTINUE
|
||
|
P(K) = PMAX
|
||
|
C
|
||
|
C
|
||
|
IF (ISV .EQ. K) GO TO 160
|
||
|
C
|
||
|
C INTERCHANGE THE TWO COLUMNS OF C DETERMINED BY THE
|
||
|
C PIVOTAL STRATEGY
|
||
|
C
|
||
|
KSV = IS(K)
|
||
|
IS(K) = IS(ISV)
|
||
|
IS(ISV) = KSV
|
||
|
C
|
||
|
KD = ISV - K
|
||
|
KJ = K
|
||
|
DO 150 J=1,K
|
||
|
CSV = C(KJ)
|
||
|
JK = KJ + KD
|
||
|
C(KJ) = C(JK)
|
||
|
C(JK) = CSV
|
||
|
KJ = KJ + N - J
|
||
|
150 CONTINUE
|
||
|
C
|
||
|
160 KN = KN + NP1 - K
|
||
|
C
|
||
|
C STORE THE COMPONENTS FOR THE CONSTANT VECTOR
|
||
|
C
|
||
|
B(K) = -F/P(K)
|
||
|
C
|
||
|
170 CONTINUE
|
||
|
C
|
||
|
C ********
|
||
|
C ******** END OF LOOP CREATING THE TRIANGULAR LINEARIZATION MATRIX
|
||
|
C ********
|
||
|
C
|
||
|
C
|
||
|
C SOLVE THE RESULTING TRIANGULAR SYSTEM FOR A NEW SOLUTION
|
||
|
C APPROXIMATION AND OBTAIN THE SOLUTION INCREMENT NORM.
|
||
|
C
|
||
|
KN = KN - 1
|
||
|
Y(N) = B(N)
|
||
|
IF (N .GT. 1) CALL SOSSOL(N, N, N, Y, C, B, KN)
|
||
|
XNORM = 0.
|
||
|
YNORM = 0.
|
||
|
DO 180 J=1,N
|
||
|
YJ = Y(J)
|
||
|
YNORM = MAX(YNORM,ABS(YJ))
|
||
|
JS = IS(J)
|
||
|
X(JS) = TEMP(JS) + YJ
|
||
|
XNORM = MAX(XNORM,ABS(X(JS)))
|
||
|
180 CONTINUE
|
||
|
C
|
||
|
C
|
||
|
C PRINT INTERMEDIATE SOLUTION ITERATES AND RESIDUAL NORM IF DESIRED
|
||
|
C
|
||
|
IF (IPRINT.NE.(-1)) GO TO 190
|
||
|
MM = M - 1
|
||
|
WRITE (LOUN,1234) FMAX, MM, (X(J),J=1,N)
|
||
|
1234 FORMAT ('0RESIDUAL NORM =', E9.2, /1X, 'SOLUTION ITERATE',
|
||
|
1 ' (', I3, ')', /(1X, 5E26.14))
|
||
|
190 CONTINUE
|
||
|
C
|
||
|
C TEST FOR CONVERGENCE TO A SOLUTION (RELATIVE AND/OR ABSOLUTE ERROR
|
||
|
C COMPARISON ON SUCCESSIVE APPROXIMATIONS OF EACH SOLUTION VARIABLE)
|
||
|
C
|
||
|
DO 200 J=1,N
|
||
|
JS = IS(J)
|
||
|
IF (ABS(Y(J)) .GT. RE*ABS(X(JS))+ATOLX) GO TO 210
|
||
|
200 CONTINUE
|
||
|
IF (FMAX .LE. FMXS) IFLAG = 1
|
||
|
C
|
||
|
C TEST FOR CONVERGENCE TO A SOLUTION BASED ON RESIDUALS
|
||
|
C
|
||
|
210 IF (FMAX .GT. TOLF) GO TO 220
|
||
|
IFLAG = IFLAG + 2
|
||
|
220 IF (IFLAG .GT. 0) GO TO 360
|
||
|
C
|
||
|
C
|
||
|
IF (M .GT. 1) GO TO 230
|
||
|
FMIN = FMAX
|
||
|
GO TO 280
|
||
|
C
|
||
|
C SAVE SOLUTION HAVING MINIMUM RESIDUAL NORM.
|
||
|
C
|
||
|
230 IF (FMAX .GE. FMIN) GO TO 250
|
||
|
MIT = M + 1
|
||
|
YN1 = YNORM
|
||
|
YN2 = YNS
|
||
|
FN1 = FMXS
|
||
|
FMIN = FMAX
|
||
|
DO 240 J=1,N
|
||
|
S(J) = X(J)
|
||
|
240 CONTINUE
|
||
|
IC = 0
|
||
|
C
|
||
|
C TEST FOR LIMITING PRECISION CONVERGENCE. VERY SLOWLY CONVERGENT
|
||
|
C PROBLEMS MAY ALSO BE DETECTED.
|
||
|
C
|
||
|
250 IF (YNORM .GT. SRURO*XNORM) GO TO 260
|
||
|
IF ((FMAX .LT. 0.2*FMXS) .OR. (FMAX .GT. 5.*FMXS)) GO TO 260
|
||
|
IF ((YNORM .LT. 0.2*YNS) .OR. (YNORM .GT. 5.*YNS)) GO TO 260
|
||
|
ICR = ICR + 1
|
||
|
IF (ICR .LT. NSRRC) GO TO 270
|
||
|
IFLAG = 4
|
||
|
FMAX = FMIN
|
||
|
GO TO 380
|
||
|
260 ICR = 0
|
||
|
C
|
||
|
C TEST FOR DIVERGENCE OF THE ITERATIVE SCHEME.
|
||
|
C
|
||
|
IF ((YNORM .LE. 2.*YNS) .AND. (FMAX .LE. 2.*FMXS)) GO TO 270
|
||
|
IC = IC + 1
|
||
|
IF (IC .LT. NSRI) GO TO 280
|
||
|
IFLAG = 7
|
||
|
GO TO 360
|
||
|
270 IC = 0
|
||
|
C
|
||
|
C CHECK TO SEE IF NEXT ITERATION CAN USE THE OLD JACOBIAN
|
||
|
C FACTORIZATION
|
||
|
C
|
||
|
280 ITRY = ITRY - 1
|
||
|
IF (ITRY .EQ. 0) GO TO 290
|
||
|
IF (20.*YNORM .GT. XNORM) GO TO 290
|
||
|
IF (YNORM .GT. 2.*YNS) GO TO 290
|
||
|
IF (FMAX .LT. 2.*FMXS) GO TO 300
|
||
|
290 ITRY = NCJS
|
||
|
C
|
||
|
C SAVE THE CURRENT SOLUTION APPROXIMATION AND THE RESIDUAL AND
|
||
|
C SOLUTION INCREMENT NORMS FOR USE IN THE NEXT ITERATION.
|
||
|
C
|
||
|
300 DO 310 J=1,N
|
||
|
TEMP(J) = X(J)
|
||
|
310 CONTINUE
|
||
|
IF (M.NE.MIT) GO TO 320
|
||
|
FN2 = FMAX
|
||
|
YN3 = YNORM
|
||
|
320 FMXS = FMAX
|
||
|
YNS = YNORM
|
||
|
C
|
||
|
C
|
||
|
330 CONTINUE
|
||
|
C
|
||
|
C *****************************************
|
||
|
C **** END OF PRINCIPAL ITERATION LOOP ****
|
||
|
C *****************************************
|
||
|
C
|
||
|
C
|
||
|
C TOO MANY ITERATIONS, CONVERGENCE WAS NOT ACHIEVED.
|
||
|
M = MXIT
|
||
|
IFLAG = 5
|
||
|
IF (YN1 .GT. 10.0*YN2 .OR. YN3 .GT. 10.0*YN1) IFLAG = 6
|
||
|
IF (FN1 .GT. 5.0*FMIN .OR. FN2 .GT. 5.0*FMIN) IFLAG = 6
|
||
|
IF (FMAX .GT. 5.0*FMIN) IFLAG = 6
|
||
|
GO TO 360
|
||
|
C
|
||
|
C
|
||
|
C A JACOBIAN-RELATED MATRIX IS EFFECTIVELY SINGULAR.
|
||
|
340 IFLAG = 8
|
||
|
DO 350 J=1,N
|
||
|
S(J) = TEMP(J)
|
||
|
350 CONTINUE
|
||
|
GO TO 380
|
||
|
C
|
||
|
C
|
||
|
360 DO 370 J=1,N
|
||
|
S(J) = X(J)
|
||
|
370 CONTINUE
|
||
|
C
|
||
|
C
|
||
|
380 MXIT = M
|
||
|
RETURN
|
||
|
END
|