mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
435 lines
18 KiB
FortranFixed
435 lines
18 KiB
FortranFixed
|
*DECK SPIGMR
|
||
|
SUBROUTINE SPIGMR (N, R0, SR, SZ, JSCAL, MAXL, MAXLP1, KMP, NRSTS,
|
||
|
+ JPRE, MATVEC, MSOLVE, NMSL, Z, V, HES, Q, LGMR, RPAR, IPAR, WK,
|
||
|
+ DL, RHOL, NRMAX, B, BNRM, X, XL, ITOL, TOL, NELT, IA, JA, A,
|
||
|
+ ISYM, IUNIT, IFLAG, ERR)
|
||
|
C***BEGIN PROLOGUE SPIGMR
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Internal routine for SGMRES.
|
||
|
C***LIBRARY SLATEC (SLAP)
|
||
|
C***CATEGORY D2A4, D2B4
|
||
|
C***TYPE SINGLE PRECISION (SPIGMR-S, DPIGMR-D)
|
||
|
C***KEYWORDS GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,
|
||
|
C NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
|
||
|
C***AUTHOR Brown, Peter, (LLNL), pnbrown@llnl.gov
|
||
|
C Hindmarsh, Alan, (LLNL), alanh@llnl.gov
|
||
|
C Seager, Mark K., (LLNL), seager@llnl.gov
|
||
|
C Lawrence Livermore National Laboratory
|
||
|
C PO Box 808, L-60
|
||
|
C Livermore, CA 94550 (510) 423-3141
|
||
|
C***DESCRIPTION
|
||
|
C This routine solves the linear system A * Z = R0 using a
|
||
|
C scaled preconditioned version of the generalized minimum
|
||
|
C residual method. An initial guess of Z = 0 is assumed.
|
||
|
C
|
||
|
C *Usage:
|
||
|
C INTEGER N, JSCAL, MAXL, MAXLP1, KMP, NRSTS, JPRE, NMSL, LGMR
|
||
|
C INTEGER IPAR(USER DEFINED), NRMAX, ITOL, NELT, IA(NELT), JA(NELT)
|
||
|
C INTEGER ISYM, IUNIT, IFLAG
|
||
|
C REAL R0(N), SR(N), SZ(N), Z(N), V(N,MAXLP1), HES(MAXLP1,MAXL),
|
||
|
C $ Q(2*MAXL), RPAR(USER DEFINED), WK(N), DL(N), RHOL, B(N),
|
||
|
C $ BNRM, X(N), XL(N), TOL, A(NELT), ERR
|
||
|
C EXTERNAL MATVEC, MSOLVE
|
||
|
C
|
||
|
C CALL SPIGMR(N, R0, SR, SZ, JSCAL, MAXL, MAXLP1, KMP,
|
||
|
C $ NRSTS, JPRE, MATVEC, MSOLVE, NMSL, Z, V, HES, Q, LGMR,
|
||
|
C $ RPAR, IPAR, WK, DL, RHOL, NRMAX, B, BNRM, X, XL,
|
||
|
C $ ITOL, TOL, NELT, IA, JA, A, ISYM, IUNIT, IFLAG, ERR)
|
||
|
C
|
||
|
C *Arguments:
|
||
|
C N :IN Integer
|
||
|
C The order of the matrix A, and the lengths
|
||
|
C of the vectors SR, SZ, R0 and Z.
|
||
|
C R0 :IN Real R0(N)
|
||
|
C R0 = the right hand side of the system A*Z = R0.
|
||
|
C R0 is also used as workspace when computing
|
||
|
C the final approximation.
|
||
|
C (R0 is the same as V(*,MAXL+1) in the call to SPIGMR.)
|
||
|
C SR :IN Real SR(N)
|
||
|
C SR is a vector of length N containing the non-zero
|
||
|
C elements of the diagonal scaling matrix for R0.
|
||
|
C SZ :IN Real SZ(N)
|
||
|
C SZ is a vector of length N containing the non-zero
|
||
|
C elements of the diagonal scaling matrix for Z.
|
||
|
C JSCAL :IN Integer
|
||
|
C A flag indicating whether arrays SR and SZ are used.
|
||
|
C JSCAL=0 means SR and SZ are not used and the
|
||
|
C algorithm will perform as if all
|
||
|
C SR(i) = 1 and SZ(i) = 1.
|
||
|
C JSCAL=1 means only SZ is used, and the algorithm
|
||
|
C performs as if all SR(i) = 1.
|
||
|
C JSCAL=2 means only SR is used, and the algorithm
|
||
|
C performs as if all SZ(i) = 1.
|
||
|
C JSCAL=3 means both SR and SZ are used.
|
||
|
C MAXL :IN Integer
|
||
|
C The maximum allowable order of the matrix H.
|
||
|
C MAXLP1 :IN Integer
|
||
|
C MAXPL1 = MAXL + 1, used for dynamic dimensioning of HES.
|
||
|
C KMP :IN Integer
|
||
|
C The number of previous vectors the new vector VNEW
|
||
|
C must be made orthogonal to. (KMP .le. MAXL)
|
||
|
C NRSTS :IN Integer
|
||
|
C Counter for the number of restarts on the current
|
||
|
C call to SGMRES. If NRSTS .gt. 0, then the residual
|
||
|
C R0 is already scaled, and so scaling of it is
|
||
|
C not necessary.
|
||
|
C JPRE :IN Integer
|
||
|
C Preconditioner type flag.
|
||
|
C MATVEC :EXT External.
|
||
|
C Name of a routine which performs the matrix vector multiply
|
||
|
C Y = A*X given A and X. The name of the MATVEC routine must
|
||
|
C be declared external in the calling program. The calling
|
||
|
C sequence to MATVEC is:
|
||
|
C CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
|
||
|
C where N is the number of unknowns, Y is the product A*X
|
||
|
C upon return, X is an input vector, and NELT is the number of
|
||
|
C non-zeros in the SLAP IA, JA, A storage for the matrix A.
|
||
|
C ISYM is a flag which, if non-zero, denotes that A is
|
||
|
C symmetric and only the lower or upper triangle is stored.
|
||
|
C MSOLVE :EXT External.
|
||
|
C Name of the routine which solves a linear system Mz = r for
|
||
|
C z given r with the preconditioning matrix M (M is supplied via
|
||
|
C RPAR and IPAR arrays. The name of the MSOLVE routine must
|
||
|
C be declared external in the calling program. The calling
|
||
|
C sequence to MSOLVE is:
|
||
|
C CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RPAR, IPAR)
|
||
|
C Where N is the number of unknowns, R is the right-hand side
|
||
|
C vector and Z is the solution upon return. NELT, IA, JA, A and
|
||
|
C ISYM are defined as below. RPAR is a real array that can be
|
||
|
C used to pass necessary preconditioning information and/or
|
||
|
C workspace to MSOLVE. IPAR is an integer work array for the
|
||
|
C same purpose as RPAR.
|
||
|
C NMSL :OUT Integer
|
||
|
C The number of calls to MSOLVE.
|
||
|
C Z :OUT Real Z(N)
|
||
|
C The final computed approximation to the solution
|
||
|
C of the system A*Z = R0.
|
||
|
C V :OUT Real V(N,MAXLP1)
|
||
|
C The N by (LGMR+1) array containing the LGMR
|
||
|
C orthogonal vectors V(*,1) to V(*,LGMR).
|
||
|
C HES :OUT Real HES(MAXLP1,MAXL)
|
||
|
C The upper triangular factor of the QR decomposition
|
||
|
C of the (LGMR+1) by LGMR upper Hessenberg matrix whose
|
||
|
C entries are the scaled inner-products of A*V(*,I)
|
||
|
C and V(*,K).
|
||
|
C Q :OUT Real Q(2*MAXL)
|
||
|
C A real array of length 2*MAXL containing the components
|
||
|
C of the Givens rotations used in the QR decomposition
|
||
|
C of HES. It is loaded in SHEQR and used in SHELS.
|
||
|
C LGMR :OUT Integer
|
||
|
C The number of iterations performed and
|
||
|
C the current order of the upper Hessenberg
|
||
|
C matrix HES.
|
||
|
C RPAR :IN Real RPAR(USER DEFINED)
|
||
|
C Real workspace passed directly to the MSOLVE routine.
|
||
|
C IPAR :IN Integer IPAR(USER DEFINED)
|
||
|
C Integer workspace passed directly to the MSOLVE routine.
|
||
|
C WK :IN Real WK(N)
|
||
|
C A real work array of length N used by routines MATVEC
|
||
|
C and MSOLVE.
|
||
|
C DL :INOUT Real DL(N)
|
||
|
C On input, a real work array of length N used for calculation
|
||
|
C of the residual norm RHO when the method is incomplete
|
||
|
C (KMP.lt.MAXL), and/or when using restarting.
|
||
|
C On output, the scaled residual vector RL. It is only loaded
|
||
|
C when performing restarts of the Krylov iteration.
|
||
|
C RHOL :OUT Real
|
||
|
C A real scalar containing the norm of the final residual.
|
||
|
C NRMAX :IN Integer
|
||
|
C The maximum number of restarts of the Krylov iteration.
|
||
|
C NRMAX .gt. 0 means restarting is active, while
|
||
|
C NRMAX = 0 means restarting is not being used.
|
||
|
C B :IN Real B(N)
|
||
|
C The right hand side of the linear system A*X = b.
|
||
|
C BNRM :IN Real
|
||
|
C The scaled norm of b.
|
||
|
C X :IN Real X(N)
|
||
|
C The current approximate solution as of the last
|
||
|
C restart.
|
||
|
C XL :IN Real XL(N)
|
||
|
C An array of length N used to hold the approximate
|
||
|
C solution X(L) when ITOL=11.
|
||
|
C ITOL :IN Integer
|
||
|
C A flag to indicate the type of convergence criterion
|
||
|
C used. See the driver for its description.
|
||
|
C TOL :IN Real
|
||
|
C The tolerance on residuals R0-A*Z in scaled norm.
|
||
|
C NELT :IN Integer
|
||
|
C The length of arrays IA, JA and A.
|
||
|
C IA :IN Integer IA(NELT)
|
||
|
C An integer array of length NELT containing matrix data.
|
||
|
C It is passed directly to the MATVEC and MSOLVE routines.
|
||
|
C JA :IN Integer JA(NELT)
|
||
|
C An integer array of length NELT containing matrix data.
|
||
|
C It is passed directly to the MATVEC and MSOLVE routines.
|
||
|
C A :IN Real A(NELT)
|
||
|
C A real array of length NELT containing matrix data.
|
||
|
C It is passed directly to the MATVEC and MSOLVE routines.
|
||
|
C ISYM :IN Integer
|
||
|
C A flag to indicate symmetric matrix storage.
|
||
|
C If ISYM=0, all non-zero entries of the matrix are
|
||
|
C stored. If ISYM=1, the matrix is symmetric and
|
||
|
C only the upper or lower triangular part is stored.
|
||
|
C IUNIT :IN Integer
|
||
|
C The i/o unit number for writing intermediate residual
|
||
|
C norm values.
|
||
|
C IFLAG :OUT Integer
|
||
|
C An integer error flag..
|
||
|
C 0 means convergence in LGMR iterations, LGMR.le.MAXL.
|
||
|
C 1 means the convergence test did not pass in MAXL
|
||
|
C iterations, but the residual norm is .lt. norm(R0),
|
||
|
C and so Z is computed.
|
||
|
C 2 means the convergence test did not pass in MAXL
|
||
|
C iterations, residual .ge. norm(R0), and Z = 0.
|
||
|
C ERR :OUT Real.
|
||
|
C Error estimate of error in final approximate solution, as
|
||
|
C defined by ITOL.
|
||
|
C
|
||
|
C *Cautions:
|
||
|
C This routine will attempt to write to the Fortran logical output
|
||
|
C unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
|
||
|
C this logical unit is attached to a file or terminal before calling
|
||
|
C this routine with a non-zero value for IUNIT. This routine does
|
||
|
C not check for the validity of a non-zero IUNIT unit number.
|
||
|
C
|
||
|
C***SEE ALSO SGMRES
|
||
|
C***ROUTINES CALLED ISSGMR, SAXPY, SCOPY, SHELS, SHEQR, SNRM2, SORTH,
|
||
|
C SRLCAL, SSCAL
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 871001 DATE WRITTEN
|
||
|
C 881213 Previous REVISION DATE
|
||
|
C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
|
||
|
C 890922 Numerous changes to prologue to make closer to SLATEC
|
||
|
C standard. (FNF)
|
||
|
C 890929 Numerous changes to reduce SP/DP differences. (FNF)
|
||
|
C 910411 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 910502 Removed MATVEC and MSOLVE from ROUTINES CALLED list. (FNF)
|
||
|
C 910506 Made subsidiary to SGMRES. (FNF)
|
||
|
C 920511 Added complete declaration section. (WRB)
|
||
|
C***END PROLOGUE SPIGMR
|
||
|
C The following is for optimized compilation on LLNL/LTSS Crays.
|
||
|
CLLL. OPTIMIZE
|
||
|
C .. Scalar Arguments ..
|
||
|
REAL BNRM, ERR, RHOL, TOL
|
||
|
INTEGER IFLAG, ISYM, ITOL, IUNIT, JPRE, JSCAL, KMP, LGMR, MAXL,
|
||
|
+ MAXLP1, N, NELT, NMSL, NRMAX, NRSTS
|
||
|
C .. Array Arguments ..
|
||
|
REAL A(NELT), B(*), DL(*), HES(MAXLP1,*), Q(*), R0(*), RPAR(*),
|
||
|
+ SR(*), SZ(*), V(N,*), WK(*), X(*), XL(*), Z(*)
|
||
|
INTEGER IA(NELT), IPAR(*), JA(NELT)
|
||
|
C .. Subroutine Arguments ..
|
||
|
EXTERNAL MATVEC, MSOLVE
|
||
|
C .. Local Scalars ..
|
||
|
REAL C, DLNRM, PROD, R0NRM, RHO, S, SNORMW, TEM
|
||
|
INTEGER I, I2, INFO, IP1, ITER, ITMAX, J, K, LL, LLP1
|
||
|
C .. External Functions ..
|
||
|
REAL SNRM2
|
||
|
INTEGER ISSGMR
|
||
|
EXTERNAL SNRM2, ISSGMR
|
||
|
C .. External Subroutines ..
|
||
|
EXTERNAL SAXPY, SCOPY, SHELS, SHEQR, SORTH, SRLCAL, SSCAL
|
||
|
C .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS
|
||
|
C***FIRST EXECUTABLE STATEMENT SPIGMR
|
||
|
C
|
||
|
C Zero out the Z array.
|
||
|
C
|
||
|
DO 5 I = 1,N
|
||
|
Z(I) = 0
|
||
|
5 CONTINUE
|
||
|
C
|
||
|
IFLAG = 0
|
||
|
LGMR = 0
|
||
|
NMSL = 0
|
||
|
C Load ITMAX, the maximum number of iterations.
|
||
|
ITMAX =(NRMAX+1)*MAXL
|
||
|
C -------------------------------------------------------------------
|
||
|
C The initial residual is the vector R0.
|
||
|
C Apply left precon. if JPRE < 0 and this is not a restart.
|
||
|
C Apply scaling to R0 if JSCAL = 2 or 3.
|
||
|
C -------------------------------------------------------------------
|
||
|
IF ((JPRE .LT. 0) .AND.(NRSTS .EQ. 0)) THEN
|
||
|
CALL SCOPY(N, R0, 1, WK, 1)
|
||
|
CALL MSOLVE(N, WK, R0, NELT, IA, JA, A, ISYM, RPAR, IPAR)
|
||
|
NMSL = NMSL + 1
|
||
|
ENDIF
|
||
|
IF (((JSCAL.EQ.2) .OR.(JSCAL.EQ.3)) .AND.(NRSTS.EQ.0)) THEN
|
||
|
DO 10 I = 1,N
|
||
|
V(I,1) = R0(I)*SR(I)
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
DO 20 I = 1,N
|
||
|
V(I,1) = R0(I)
|
||
|
20 CONTINUE
|
||
|
ENDIF
|
||
|
R0NRM = SNRM2(N, V, 1)
|
||
|
ITER = NRSTS*MAXL
|
||
|
C
|
||
|
C Call stopping routine ISSGMR.
|
||
|
C
|
||
|
IF (ISSGMR(N, B, X, XL, NELT, IA, JA, A, ISYM, MSOLVE,
|
||
|
$ NMSL, ITOL, TOL, ITMAX, ITER, ERR, IUNIT, V(1,1), Z, WK,
|
||
|
$ RPAR, IPAR, R0NRM, BNRM, SR, SZ, JSCAL,
|
||
|
$ KMP, LGMR, MAXL, MAXLP1, V, Q, SNORMW, PROD, R0NRM,
|
||
|
$ HES, JPRE) .NE. 0) RETURN
|
||
|
TEM = 1.0E0/R0NRM
|
||
|
CALL SSCAL(N, TEM, V(1,1), 1)
|
||
|
C
|
||
|
C Zero out the HES array.
|
||
|
C
|
||
|
DO 50 J = 1,MAXL
|
||
|
DO 40 I = 1,MAXLP1
|
||
|
HES(I,J) = 0
|
||
|
40 CONTINUE
|
||
|
50 CONTINUE
|
||
|
C -------------------------------------------------------------------
|
||
|
C Main loop to compute the vectors V(*,2) to V(*,MAXL).
|
||
|
C The running product PROD is needed for the convergence test.
|
||
|
C -------------------------------------------------------------------
|
||
|
PROD = 1
|
||
|
DO 90 LL = 1,MAXL
|
||
|
LGMR = LL
|
||
|
C -------------------------------------------------------------------
|
||
|
C Unscale the current V(LL) and store in WK. Call routine
|
||
|
C MSOLVE to compute(M-inverse)*WK, where M is the
|
||
|
C preconditioner matrix. Save the answer in Z. Call routine
|
||
|
C MATVEC to compute VNEW = A*Z, where A is the the system
|
||
|
C matrix. save the answer in V(LL+1). Scale V(LL+1). Call
|
||
|
C routine SORTH to orthogonalize the new vector VNEW =
|
||
|
C V(*,LL+1). Call routine SHEQR to update the factors of HES.
|
||
|
C -------------------------------------------------------------------
|
||
|
IF ((JSCAL .EQ. 1) .OR.(JSCAL .EQ. 3)) THEN
|
||
|
DO 60 I = 1,N
|
||
|
WK(I) = V(I,LL)/SZ(I)
|
||
|
60 CONTINUE
|
||
|
ELSE
|
||
|
CALL SCOPY(N, V(1,LL), 1, WK, 1)
|
||
|
ENDIF
|
||
|
IF (JPRE .GT. 0) THEN
|
||
|
CALL MSOLVE(N, WK, Z, NELT, IA, JA, A, ISYM, RPAR, IPAR)
|
||
|
NMSL = NMSL + 1
|
||
|
CALL MATVEC(N, Z, V(1,LL+1), NELT, IA, JA, A, ISYM)
|
||
|
ELSE
|
||
|
CALL MATVEC(N, WK, V(1,LL+1), NELT, IA, JA, A, ISYM)
|
||
|
ENDIF
|
||
|
IF (JPRE .LT. 0) THEN
|
||
|
CALL SCOPY(N, V(1,LL+1), 1, WK, 1)
|
||
|
CALL MSOLVE(N,WK,V(1,LL+1),NELT,IA,JA,A,ISYM,RPAR,IPAR)
|
||
|
NMSL = NMSL + 1
|
||
|
ENDIF
|
||
|
IF ((JSCAL .EQ. 2) .OR.(JSCAL .EQ. 3)) THEN
|
||
|
DO 65 I = 1,N
|
||
|
V(I,LL+1) = V(I,LL+1)*SR(I)
|
||
|
65 CONTINUE
|
||
|
ENDIF
|
||
|
CALL SORTH(V(1,LL+1), V, HES, N, LL, MAXLP1, KMP, SNORMW)
|
||
|
HES(LL+1,LL) = SNORMW
|
||
|
CALL SHEQR(HES, MAXLP1, LL, Q, INFO, LL)
|
||
|
IF (INFO .EQ. LL) GO TO 120
|
||
|
C -------------------------------------------------------------------
|
||
|
C Update RHO, the estimate of the norm of the residual R0-A*ZL.
|
||
|
C If KMP < MAXL, then the vectors V(*,1),...,V(*,LL+1) are not
|
||
|
C necessarily orthogonal for LL > KMP. The vector DL must then
|
||
|
C be computed, and its norm used in the calculation of RHO.
|
||
|
C -------------------------------------------------------------------
|
||
|
PROD = PROD*Q(2*LL)
|
||
|
RHO = ABS(PROD*R0NRM)
|
||
|
IF ((LL.GT.KMP) .AND.(KMP.LT.MAXL)) THEN
|
||
|
IF (LL .EQ. KMP+1) THEN
|
||
|
CALL SCOPY(N, V(1,1), 1, DL, 1)
|
||
|
DO 75 I = 1,KMP
|
||
|
IP1 = I + 1
|
||
|
I2 = I*2
|
||
|
S = Q(I2)
|
||
|
C = Q(I2-1)
|
||
|
DO 70 K = 1,N
|
||
|
DL(K) = S*DL(K) + C*V(K,IP1)
|
||
|
70 CONTINUE
|
||
|
75 CONTINUE
|
||
|
ENDIF
|
||
|
S = Q(2*LL)
|
||
|
C = Q(2*LL-1)/SNORMW
|
||
|
LLP1 = LL + 1
|
||
|
DO 80 K = 1,N
|
||
|
DL(K) = S*DL(K) + C*V(K,LLP1)
|
||
|
80 CONTINUE
|
||
|
DLNRM = SNRM2(N, DL, 1)
|
||
|
RHO = RHO*DLNRM
|
||
|
ENDIF
|
||
|
RHOL = RHO
|
||
|
C -------------------------------------------------------------------
|
||
|
C Test for convergence. If passed, compute approximation ZL.
|
||
|
C If failed and LL < MAXL, then continue iterating.
|
||
|
C -------------------------------------------------------------------
|
||
|
ITER = NRSTS*MAXL + LGMR
|
||
|
IF (ISSGMR(N, B, X, XL, NELT, IA, JA, A, ISYM, MSOLVE,
|
||
|
$ NMSL, ITOL, TOL, ITMAX, ITER, ERR, IUNIT, DL, Z, WK,
|
||
|
$ RPAR, IPAR, RHOL, BNRM, SR, SZ, JSCAL,
|
||
|
$ KMP, LGMR, MAXL, MAXLP1, V, Q, SNORMW, PROD, R0NRM,
|
||
|
$ HES, JPRE) .NE. 0) GO TO 200
|
||
|
IF (LL .EQ. MAXL) GO TO 100
|
||
|
C -------------------------------------------------------------------
|
||
|
C Rescale so that the norm of V(1,LL+1) is one.
|
||
|
C -------------------------------------------------------------------
|
||
|
TEM = 1.0E0/SNORMW
|
||
|
CALL SSCAL(N, TEM, V(1,LL+1), 1)
|
||
|
90 CONTINUE
|
||
|
100 CONTINUE
|
||
|
IF (RHO .LT. R0NRM) GO TO 150
|
||
|
120 CONTINUE
|
||
|
IFLAG = 2
|
||
|
C
|
||
|
C Load approximate solution with zero.
|
||
|
C
|
||
|
DO 130 I = 1,N
|
||
|
Z(I) = 0
|
||
|
130 CONTINUE
|
||
|
RETURN
|
||
|
150 IFLAG = 1
|
||
|
C
|
||
|
C Tolerance not met, but residual norm reduced.
|
||
|
C
|
||
|
IF (NRMAX .GT. 0) THEN
|
||
|
C
|
||
|
C If performing restarting (NRMAX > 0) calculate the residual
|
||
|
C vector RL and store it in the DL array. If the incomplete
|
||
|
C version is being used (KMP < MAXL) then DL has already been
|
||
|
C calculated up to a scaling factor. Use SRLCAL to calculate
|
||
|
C the scaled residual vector.
|
||
|
C
|
||
|
CALL SRLCAL(N, KMP, MAXL, MAXL, V, Q, DL, SNORMW, PROD,
|
||
|
$ R0NRM)
|
||
|
ENDIF
|
||
|
C -------------------------------------------------------------------
|
||
|
C Compute the approximation ZL to the solution. Since the
|
||
|
C vector Z was used as workspace, and the initial guess
|
||
|
C of the linear iteration is zero, Z must be reset to zero.
|
||
|
C -------------------------------------------------------------------
|
||
|
200 CONTINUE
|
||
|
LL = LGMR
|
||
|
LLP1 = LL + 1
|
||
|
DO 210 K = 1,LLP1
|
||
|
R0(K) = 0
|
||
|
210 CONTINUE
|
||
|
R0(1) = R0NRM
|
||
|
CALL SHELS(HES, MAXLP1, LL, Q, R0)
|
||
|
DO 220 K = 1,N
|
||
|
Z(K) = 0
|
||
|
220 CONTINUE
|
||
|
DO 230 I = 1,LL
|
||
|
CALL SAXPY(N, R0(I), V(1,I), 1, Z, 1)
|
||
|
230 CONTINUE
|
||
|
IF ((JSCAL .EQ. 1) .OR.(JSCAL .EQ. 3)) THEN
|
||
|
DO 240 I = 1,N
|
||
|
Z(I) = Z(I)/SZ(I)
|
||
|
240 CONTINUE
|
||
|
ENDIF
|
||
|
IF (JPRE .GT. 0) THEN
|
||
|
CALL SCOPY(N, Z, 1, WK, 1)
|
||
|
CALL MSOLVE(N, WK, Z, NELT, IA, JA, A, ISYM, RPAR, IPAR)
|
||
|
NMSL = NMSL + 1
|
||
|
ENDIF
|
||
|
RETURN
|
||
|
C------------- LAST LINE OF SPIGMR FOLLOWS ----------------------------
|
||
|
END
|