mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
143 lines
4.1 KiB
FortranFixed
143 lines
4.1 KiB
FortranFixed
|
*DECK SPPDI
|
||
|
SUBROUTINE SPPDI (AP, N, DET, JOB)
|
||
|
C***BEGIN PROLOGUE SPPDI
|
||
|
C***PURPOSE Compute the determinant and inverse of a real symmetric
|
||
|
C positive definite matrix using factors from SPPCO or SPPFA.
|
||
|
C***LIBRARY SLATEC (LINPACK)
|
||
|
C***CATEGORY D2B1B, D3B1B
|
||
|
C***TYPE SINGLE PRECISION (SPPDI-S, DPPDI-D, CPPDI-C)
|
||
|
C***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
|
||
|
C PACKED, POSITIVE DEFINITE
|
||
|
C***AUTHOR Moler, C. B., (U. of New Mexico)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C SPPDI computes the determinant and inverse
|
||
|
C of a real symmetric positive definite matrix
|
||
|
C using the factors computed by SPPCO or SPPFA .
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C AP REAL (N*(N+1)/2)
|
||
|
C the output from SPPCO or SPPFA.
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C the order of the matrix A .
|
||
|
C
|
||
|
C JOB INTEGER
|
||
|
C = 11 both determinant and inverse.
|
||
|
C = 01 inverse only.
|
||
|
C = 10 determinant only.
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C AP the upper triangular half of the inverse .
|
||
|
C The strict lower triangle is unaltered.
|
||
|
C
|
||
|
C DET REAL(2)
|
||
|
C determinant of original matrix if requested.
|
||
|
C Otherwise not referenced.
|
||
|
C Determinant = DET(1) * 10.0**DET(2)
|
||
|
C with 1.0 .LE. DET(1) .LT. 10.0
|
||
|
C or DET(1) .EQ. 0.0 .
|
||
|
C
|
||
|
C Error Condition
|
||
|
C
|
||
|
C A division by zero will occur if the input factor contains
|
||
|
C a zero on the diagonal and the inverse is requested.
|
||
|
C It will not occur if the subroutines are called correctly
|
||
|
C and if SPOCO or SPOFA has set INFO .EQ. 0 .
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED SAXPY, SSCAL
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 780814 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE SPPDI
|
||
|
INTEGER N,JOB
|
||
|
REAL AP(*)
|
||
|
REAL DET(2)
|
||
|
C
|
||
|
REAL T
|
||
|
REAL S
|
||
|
INTEGER I,II,J,JJ,JM1,J1,K,KJ,KK,KP1,K1
|
||
|
C***FIRST EXECUTABLE STATEMENT SPPDI
|
||
|
C
|
||
|
C COMPUTE DETERMINANT
|
||
|
C
|
||
|
IF (JOB/10 .EQ. 0) GO TO 70
|
||
|
DET(1) = 1.0E0
|
||
|
DET(2) = 0.0E0
|
||
|
S = 10.0E0
|
||
|
II = 0
|
||
|
DO 50 I = 1, N
|
||
|
II = II + I
|
||
|
DET(1) = AP(II)**2*DET(1)
|
||
|
IF (DET(1) .EQ. 0.0E0) GO TO 60
|
||
|
10 IF (DET(1) .GE. 1.0E0) GO TO 20
|
||
|
DET(1) = S*DET(1)
|
||
|
DET(2) = DET(2) - 1.0E0
|
||
|
GO TO 10
|
||
|
20 CONTINUE
|
||
|
30 IF (DET(1) .LT. S) GO TO 40
|
||
|
DET(1) = DET(1)/S
|
||
|
DET(2) = DET(2) + 1.0E0
|
||
|
GO TO 30
|
||
|
40 CONTINUE
|
||
|
50 CONTINUE
|
||
|
60 CONTINUE
|
||
|
70 CONTINUE
|
||
|
C
|
||
|
C COMPUTE INVERSE(R)
|
||
|
C
|
||
|
IF (MOD(JOB,10) .EQ. 0) GO TO 140
|
||
|
KK = 0
|
||
|
DO 100 K = 1, N
|
||
|
K1 = KK + 1
|
||
|
KK = KK + K
|
||
|
AP(KK) = 1.0E0/AP(KK)
|
||
|
T = -AP(KK)
|
||
|
CALL SSCAL(K-1,T,AP(K1),1)
|
||
|
KP1 = K + 1
|
||
|
J1 = KK + 1
|
||
|
KJ = KK + K
|
||
|
IF (N .LT. KP1) GO TO 90
|
||
|
DO 80 J = KP1, N
|
||
|
T = AP(KJ)
|
||
|
AP(KJ) = 0.0E0
|
||
|
CALL SAXPY(K,T,AP(K1),1,AP(J1),1)
|
||
|
J1 = J1 + J
|
||
|
KJ = KJ + J
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
100 CONTINUE
|
||
|
C
|
||
|
C FORM INVERSE(R) * TRANS(INVERSE(R))
|
||
|
C
|
||
|
JJ = 0
|
||
|
DO 130 J = 1, N
|
||
|
J1 = JJ + 1
|
||
|
JJ = JJ + J
|
||
|
JM1 = J - 1
|
||
|
K1 = 1
|
||
|
KJ = J1
|
||
|
IF (JM1 .LT. 1) GO TO 120
|
||
|
DO 110 K = 1, JM1
|
||
|
T = AP(KJ)
|
||
|
CALL SAXPY(K,T,AP(J1),1,AP(K1),1)
|
||
|
K1 = K1 + K
|
||
|
KJ = KJ + 1
|
||
|
110 CONTINUE
|
||
|
120 CONTINUE
|
||
|
T = AP(JJ)
|
||
|
CALL SSCAL(J,T,AP(J1),1)
|
||
|
130 CONTINUE
|
||
|
140 CONTINUE
|
||
|
RETURN
|
||
|
END
|