mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
286 lines
13 KiB
FortranFixed
286 lines
13 KiB
FortranFixed
|
*DECK SSDCGS
|
||
|
SUBROUTINE SSDCGS (N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
|
||
|
+ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
|
||
|
C***BEGIN PROLOGUE SSDCGS
|
||
|
C***PURPOSE Diagonally Scaled CGS Sparse Ax=b Solver.
|
||
|
C Routine to solve a linear system Ax = b using the
|
||
|
C BiConjugate Gradient Squared method with diagonal scaling.
|
||
|
C***LIBRARY SLATEC (SLAP)
|
||
|
C***CATEGORY D2A4, D2B4
|
||
|
C***TYPE SINGLE PRECISION (SSDCGS-S, DSDCGS-D)
|
||
|
C***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM, SLAP,
|
||
|
C SPARSE
|
||
|
C***AUTHOR Greenbaum, Anne, (Courant Institute)
|
||
|
C Seager, Mark K., (LLNL)
|
||
|
C Lawrence Livermore National Laboratory
|
||
|
C PO BOX 808, L-60
|
||
|
C Livermore, CA 94550 (510) 423-3141
|
||
|
C seager@llnl.gov
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C *Usage:
|
||
|
C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
|
||
|
C INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
|
||
|
C REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(8*N)
|
||
|
C
|
||
|
C CALL SSDCGS(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
|
||
|
C $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW )
|
||
|
C
|
||
|
C *Arguments:
|
||
|
C N :IN Integer
|
||
|
C Order of the Matrix.
|
||
|
C B :IN Real B(N).
|
||
|
C Right-hand side vector.
|
||
|
C X :INOUT Real X(N).
|
||
|
C On input X is your initial guess for solution vector.
|
||
|
C On output X is the final approximate solution.
|
||
|
C NELT :IN Integer.
|
||
|
C Number of Non-Zeros stored in A.
|
||
|
C IA :INOUT Integer IA(NELT).
|
||
|
C JA :INOUT Integer JA(NELT).
|
||
|
C A :INOUT Real A(NELT).
|
||
|
C These arrays should hold the matrix A in either the SLAP
|
||
|
C Triad format or the SLAP Column format. See "Description",
|
||
|
C below. If the SLAP Triad format is chosen it is changed
|
||
|
C internally to the SLAP Column format.
|
||
|
C ISYM :IN Integer.
|
||
|
C Flag to indicate symmetric storage format.
|
||
|
C If ISYM=0, all non-zero entries of the matrix are stored.
|
||
|
C If ISYM=1, the matrix is symmetric, and only the upper
|
||
|
C or lower triangle of the matrix is stored.
|
||
|
C ITOL :IN Integer.
|
||
|
C Flag to indicate type of convergence criterion.
|
||
|
C If ITOL=1, iteration stops when the 2-norm of the residual
|
||
|
C divided by the 2-norm of the right-hand side is less than TOL.
|
||
|
C This routine must calculate the residual from R = A*X - B.
|
||
|
C This is unnatural and hence expensive for this type of iter-
|
||
|
C ative method. ITOL=2 is *STRONGLY* recommended.
|
||
|
C If ITOL=2, iteration stops when the 2-norm of M-inv times the
|
||
|
C residual divided by the 2-norm of M-inv times the right hand
|
||
|
C side is less than TOL, where M-inv time a vector is the pre-
|
||
|
C conditioning step. This is the *NATURAL* stopping for this
|
||
|
C iterative method and is *STRONGLY* recommended.
|
||
|
C ITOL=11 is often useful for checking and comparing different
|
||
|
C routines. For this case, the user must supply the "exact"
|
||
|
C solution or a very accurate approximation (one with an error
|
||
|
C much less than TOL) through a common block,
|
||
|
C COMMON /SSLBLK/ SOLN( )
|
||
|
C If ITOL=11, iteration stops when the 2-norm of the difference
|
||
|
C between the iterative approximation and the user-supplied
|
||
|
C solution divided by the 2-norm of the user-supplied solution
|
||
|
C is less than TOL. Note that this requires the user to set up
|
||
|
C the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
|
||
|
C The routine with this declaration should be loaded before the
|
||
|
C stop test so that the correct length is used by the loader.
|
||
|
C This procedure is not standard Fortran and may not work
|
||
|
C correctly on your system (although it has worked on every
|
||
|
C system the authors have tried). If ITOL is not 11 then this
|
||
|
C common block is indeed standard Fortran.
|
||
|
C TOL :INOUT Real.
|
||
|
C Convergence criterion, as described above. (Reset if IERR=4.)
|
||
|
C ITMAX :IN Integer.
|
||
|
C Maximum number of iterations.
|
||
|
C ITER :OUT Integer.
|
||
|
C Number of iterations required to reach convergence, or
|
||
|
C ITMAX+1 if convergence criterion could not be achieved in
|
||
|
C ITMAX iterations.
|
||
|
C ERR :OUT Real.
|
||
|
C Error estimate of error in final approximate solution, as
|
||
|
C defined by ITOL.
|
||
|
C IERR :OUT Integer.
|
||
|
C Return error flag.
|
||
|
C IERR = 0 => All went well.
|
||
|
C IERR = 1 => Insufficient space allocated for WORK or IWORK.
|
||
|
C IERR = 2 => Method failed to converge in ITMAX steps.
|
||
|
C IERR = 3 => Error in user input.
|
||
|
C Check input values of N, ITOL.
|
||
|
C IERR = 4 => User error tolerance set too tight.
|
||
|
C Reset to 500*R1MACH(3). Iteration proceeded.
|
||
|
C IERR = 5 => Breakdown of the method detected.
|
||
|
C (r0,r) approximately 0.
|
||
|
C IERR = 6 => Stagnation of the method detected.
|
||
|
C (r0,v) approximately 0.
|
||
|
C IUNIT :IN Integer.
|
||
|
C Unit number on which to write the error at each iteration,
|
||
|
C if this is desired for monitoring convergence. If unit
|
||
|
C number is 0, no writing will occur.
|
||
|
C RWORK :WORK Real RWORK(LENW).
|
||
|
C Real array used for workspace.
|
||
|
C LENW :IN Integer.
|
||
|
C Length of the real workspace, RWORK. LENW >= 8*N.
|
||
|
C IWORK :WORK Integer IWORK(LENIW).
|
||
|
C Used to hold pointers into the RWORK array.
|
||
|
C Upon return the following locations of IWORK hold information
|
||
|
C which may be of use to the user:
|
||
|
C IWORK(9) Amount of Integer workspace actually used.
|
||
|
C IWORK(10) Amount of Real workspace actually used.
|
||
|
C LENIW :IN Integer.
|
||
|
C Length of the integer workspace, IWORK. LENIW >= 10.
|
||
|
C
|
||
|
C *Description:
|
||
|
C This routine performs preconditioned BiConjugate gradient
|
||
|
C method on the Non-Symmetric positive definite linear system
|
||
|
C Ax=b. The preconditioner is M = DIAG(A), the diagonal of the
|
||
|
C matrix A. This is the simplest of preconditioners and
|
||
|
C vectorizes very well.
|
||
|
C
|
||
|
C The Sparse Linear Algebra Package (SLAP) utilizes two matrix
|
||
|
C data structures: 1) the SLAP Triad format or 2) the SLAP
|
||
|
C Column format. The user can hand this routine either of the
|
||
|
C of these data structures and SLAP will figure out which on
|
||
|
C is being used and act accordingly.
|
||
|
C
|
||
|
C =================== S L A P Triad format ===================
|
||
|
C
|
||
|
C This routine requires that the matrix A be stored in the
|
||
|
C SLAP Triad format. In this format only the non-zeros are
|
||
|
C stored. They may appear in *ANY* order. The user supplies
|
||
|
C three arrays of length NELT, where NELT is the number of
|
||
|
C non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
|
||
|
C each non-zero the user puts the row and column index of that
|
||
|
C matrix element in the IA and JA arrays. The value of the
|
||
|
C non-zero matrix element is placed in the corresponding
|
||
|
C location of the A array. This is an extremely easy data
|
||
|
C structure to generate. On the other hand it is not too
|
||
|
C efficient on vector computers for the iterative solution of
|
||
|
C linear systems. Hence, SLAP changes this input data
|
||
|
C structure to the SLAP Column format for the iteration (but
|
||
|
C does not change it back).
|
||
|
C
|
||
|
C Here is an example of the SLAP Triad storage format for a
|
||
|
C 5x5 Matrix. Recall that the entries may appear in any order.
|
||
|
C
|
||
|
C 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
|
||
|
C 1 2 3 4 5 6 7 8 9 10 11
|
||
|
C |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
|
||
|
C |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
|
||
|
C | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
|
||
|
C | 0 0 0 44 0|
|
||
|
C |51 0 53 0 55|
|
||
|
C
|
||
|
C =================== S L A P Column format ==================
|
||
|
C
|
||
|
C This routine requires that the matrix A be stored in the
|
||
|
C SLAP Column format. In this format the non-zeros are stored
|
||
|
C counting down columns (except for the diagonal entry, which
|
||
|
C must appear first in each "column") and are stored in the
|
||
|
C real array A. In other words, for each column in the matrix
|
||
|
C put the diagonal entry in A. Then put in the other non-zero
|
||
|
C elements going down the column (except the diagonal) in
|
||
|
C order. The IA array holds the row index for each non-zero.
|
||
|
C The JA array holds the offsets into the IA, A arrays for the
|
||
|
C beginning of each column. That is, IA(JA(ICOL)),
|
||
|
C A(JA(ICOL)) points to the beginning of the ICOL-th column in
|
||
|
C IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
|
||
|
C end of the ICOL-th column. Note that we always have
|
||
|
C JA(N+1) = NELT+1, where N is the number of columns in the
|
||
|
C matrix and NELT is the number of non-zeros in the matrix.
|
||
|
C
|
||
|
C Here is an example of the SLAP Column storage format for a
|
||
|
C 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
|
||
|
C column):
|
||
|
C
|
||
|
C 5x5 Matrix SLAP Column format for 5x5 matrix on left.
|
||
|
C 1 2 3 4 5 6 7 8 9 10 11
|
||
|
C |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
|
||
|
C |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
|
||
|
C | 0 0 33 0 35| JA: 1 4 6 8 9 12
|
||
|
C | 0 0 0 44 0|
|
||
|
C |51 0 53 0 55|
|
||
|
C
|
||
|
C *Side Effects:
|
||
|
C The SLAP Triad format (IA, JA, A) is modified internally to
|
||
|
C be the SLAP Column format. See above.
|
||
|
C
|
||
|
C *Cautions:
|
||
|
C This routine will attempt to write to the Fortran logical output
|
||
|
C unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
|
||
|
C this logical unit is attached to a file or terminal before calling
|
||
|
C this routine with a non-zero value for IUNIT. This routine does
|
||
|
C not check for the validity of a non-zero IUNIT unit number.
|
||
|
C
|
||
|
C***SEE ALSO SCGS, SLUBCG
|
||
|
C***REFERENCES 1. P. Sonneveld, CGS, a fast Lanczos-type solver
|
||
|
C for nonsymmetric linear systems, Delft University
|
||
|
C of Technology Report 84-16, Department of Mathe-
|
||
|
C matics and Informatics, Delft, The Netherlands.
|
||
|
C 2. E. F. Kaasschieter, The solution of non-symmetric
|
||
|
C linear systems by biconjugate gradients or conjugate
|
||
|
C gradients squared, Delft University of Technology
|
||
|
C Report 86-21, Department of Mathematics and Informa-
|
||
|
C tics, Delft, The Netherlands.
|
||
|
C***ROUTINES CALLED SCGS, SCHKW, SS2Y, SSDI, SSDS, SSMV
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 871119 DATE WRITTEN
|
||
|
C 881213 Previous REVISION DATE
|
||
|
C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
|
||
|
C 890921 Removed TeX from comments. (FNF)
|
||
|
C 890922 Numerous changes to prologue to make closer to SLATEC
|
||
|
C standard. (FNF)
|
||
|
C 890929 Numerous changes to reduce SP/DP differences. (FNF)
|
||
|
C 910411 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920407 COMMON BLOCK renamed SSLBLK. (WRB)
|
||
|
C 920511 Added complete declaration section. (WRB)
|
||
|
C 920929 Corrected format of references. (FNF)
|
||
|
C 921113 Corrected C***CATEGORY line. (FNF)
|
||
|
C***END PROLOGUE SSDCGS
|
||
|
C .. Parameters ..
|
||
|
INTEGER LOCRB, LOCIB
|
||
|
PARAMETER (LOCRB=1, LOCIB=11)
|
||
|
C .. Scalar Arguments ..
|
||
|
REAL ERR, TOL
|
||
|
INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, LENIW, LENW, N, NELT
|
||
|
C .. Array Arguments ..
|
||
|
REAL A(N), B(N), RWORK(LENW), X(N)
|
||
|
INTEGER IA(NELT), IWORK(LENIW), JA(NELT)
|
||
|
C .. Local Scalars ..
|
||
|
INTEGER LOCDIN, LOCIW, LOCP, LOCQ, LOCR, LOCR0, LOCU, LOCV1,
|
||
|
+ LOCV2, LOCW
|
||
|
C .. External Subroutines ..
|
||
|
EXTERNAL SCGS, SCHKW, SS2Y, SSDI, SSDS, SSMV
|
||
|
C***FIRST EXECUTABLE STATEMENT SSDCGS
|
||
|
C
|
||
|
IERR = 0
|
||
|
IF( N.LT.1 .OR. NELT.LT.1 ) THEN
|
||
|
IERR = 3
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
C Change the SLAP input matrix IA, JA, A to SLAP-Column format.
|
||
|
CALL SS2Y( N, NELT, IA, JA, A, ISYM )
|
||
|
C
|
||
|
C Set up the workspace.
|
||
|
LOCIW = LOCIB
|
||
|
C
|
||
|
LOCDIN = LOCRB
|
||
|
LOCR = LOCDIN + N
|
||
|
LOCR0 = LOCR + N
|
||
|
LOCP = LOCR0 + N
|
||
|
LOCQ = LOCP + N
|
||
|
LOCU = LOCQ + N
|
||
|
LOCV1 = LOCU + N
|
||
|
LOCV2 = LOCV1 + N
|
||
|
LOCW = LOCV2 + N
|
||
|
C
|
||
|
C Check the workspace allocations.
|
||
|
CALL SCHKW( 'SSDCGS', LOCIW, LENIW, LOCW, LENW, IERR, ITER, ERR )
|
||
|
IF( IERR.NE.0 ) RETURN
|
||
|
C
|
||
|
IWORK(4) = LOCDIN
|
||
|
IWORK(9) = LOCIW
|
||
|
IWORK(10) = LOCW
|
||
|
C
|
||
|
C Compute the inverse of the diagonal of the matrix.
|
||
|
CALL SSDS(N, NELT, IA, JA, A, ISYM, RWORK(LOCDIN))
|
||
|
C
|
||
|
C Perform the Diagonally Scaled
|
||
|
C BiConjugate Gradient Squared algorithm.
|
||
|
CALL SCGS(N, B, X, NELT, IA, JA, A, ISYM, SSMV,
|
||
|
$ SSDI, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
|
||
|
$ RWORK(LOCR), RWORK(LOCR0), RWORK(LOCP),
|
||
|
$ RWORK(LOCQ), RWORK(LOCU), RWORK(LOCV1),
|
||
|
$ RWORK(LOCV2), RWORK(1), IWORK(1))
|
||
|
RETURN
|
||
|
C------------- LAST LINE OF SSDCGS FOLLOWS ----------------------------
|
||
|
END
|