mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
103 lines
3 KiB
FortranFixed
103 lines
3 KiB
FortranFixed
|
*DECK SSWAP
|
||
|
SUBROUTINE SSWAP (N, SX, INCX, SY, INCY)
|
||
|
C***BEGIN PROLOGUE SSWAP
|
||
|
C***PURPOSE Interchange two vectors.
|
||
|
C***LIBRARY SLATEC (BLAS)
|
||
|
C***CATEGORY D1A5
|
||
|
C***TYPE SINGLE PRECISION (SSWAP-S, DSWAP-D, CSWAP-C, ISWAP-I)
|
||
|
C***KEYWORDS BLAS, INTERCHANGE, LINEAR ALGEBRA, VECTOR
|
||
|
C***AUTHOR Lawson, C. L., (JPL)
|
||
|
C Hanson, R. J., (SNLA)
|
||
|
C Kincaid, D. R., (U. of Texas)
|
||
|
C Krogh, F. T., (JPL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C B L A S Subprogram
|
||
|
C Description of Parameters
|
||
|
C
|
||
|
C --Input--
|
||
|
C N number of elements in input vector(s)
|
||
|
C SX single precision vector with N elements
|
||
|
C INCX storage spacing between elements of SX
|
||
|
C SY single precision vector with N elements
|
||
|
C INCY storage spacing between elements of SY
|
||
|
C
|
||
|
C --Output--
|
||
|
C SX input vector SY (unchanged if N .LE. 0)
|
||
|
C SY input vector SX (unchanged if N .LE. 0)
|
||
|
C
|
||
|
C Interchange single precision SX and single precision SY.
|
||
|
C For I = 0 to N-1, interchange SX(LX+I*INCX) and SY(LY+I*INCY),
|
||
|
C where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
|
||
|
C defined in a similar way using INCY.
|
||
|
C
|
||
|
C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
|
||
|
C Krogh, Basic linear algebra subprograms for Fortran
|
||
|
C usage, Algorithm No. 539, Transactions on Mathematical
|
||
|
C Software 5, 3 (September 1979), pp. 308-323.
|
||
|
C***ROUTINES CALLED (NONE)
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 791001 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920310 Corrected definition of LX in DESCRIPTION. (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE SSWAP
|
||
|
REAL SX(*), SY(*), STEMP1, STEMP2, STEMP3
|
||
|
C***FIRST EXECUTABLE STATEMENT SSWAP
|
||
|
IF (N .LE. 0) RETURN
|
||
|
IF (INCX .EQ. INCY) IF (INCX-1) 5,20,60
|
||
|
C
|
||
|
C Code for unequal or nonpositive increments.
|
||
|
C
|
||
|
5 IX = 1
|
||
|
IY = 1
|
||
|
IF (INCX .LT. 0) IX = (-N+1)*INCX + 1
|
||
|
IF (INCY .LT. 0) IY = (-N+1)*INCY + 1
|
||
|
DO 10 I = 1,N
|
||
|
STEMP1 = SX(IX)
|
||
|
SX(IX) = SY(IY)
|
||
|
SY(IY) = STEMP1
|
||
|
IX = IX + INCX
|
||
|
IY = IY + INCY
|
||
|
10 CONTINUE
|
||
|
RETURN
|
||
|
C
|
||
|
C Code for both increments equal to 1.
|
||
|
C
|
||
|
C Clean-up loop so remaining vector length is a multiple of 3.
|
||
|
C
|
||
|
20 M = MOD(N,3)
|
||
|
IF (M .EQ. 0) GO TO 40
|
||
|
DO 30 I = 1,M
|
||
|
STEMP1 = SX(I)
|
||
|
SX(I) = SY(I)
|
||
|
SY(I) = STEMP1
|
||
|
30 CONTINUE
|
||
|
IF (N .LT. 3) RETURN
|
||
|
40 MP1 = M + 1
|
||
|
DO 50 I = MP1,N,3
|
||
|
STEMP1 = SX(I)
|
||
|
STEMP2 = SX(I+1)
|
||
|
STEMP3 = SX(I+2)
|
||
|
SX(I) = SY(I)
|
||
|
SX(I+1) = SY(I+1)
|
||
|
SX(I+2) = SY(I+2)
|
||
|
SY(I) = STEMP1
|
||
|
SY(I+1) = STEMP2
|
||
|
SY(I+2) = STEMP3
|
||
|
50 CONTINUE
|
||
|
RETURN
|
||
|
C
|
||
|
C Code for equal, positive, non-unit increments.
|
||
|
C
|
||
|
60 NS = N*INCX
|
||
|
DO 70 I = 1,NS,INCX
|
||
|
STEMP1 = SX(I)
|
||
|
SX(I) = SY(I)
|
||
|
SY(I) = STEMP1
|
||
|
70 CONTINUE
|
||
|
RETURN
|
||
|
END
|