mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
175 lines
5.4 KiB
FortranFixed
175 lines
5.4 KiB
FortranFixed
|
*DECK STRCO
|
||
|
SUBROUTINE STRCO (T, LDT, N, RCOND, Z, JOB)
|
||
|
C***BEGIN PROLOGUE STRCO
|
||
|
C***PURPOSE Estimate the condition number of a triangular matrix.
|
||
|
C***LIBRARY SLATEC (LINPACK)
|
||
|
C***CATEGORY D2A3
|
||
|
C***TYPE SINGLE PRECISION (STRCO-S, DTRCO-D, CTRCO-C)
|
||
|
C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
|
||
|
C TRIANGULAR MATRIX
|
||
|
C***AUTHOR Moler, C. B., (U. of New Mexico)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C STRCO estimates the condition of a real triangular matrix.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C T REAL(LDT,N)
|
||
|
C T contains the triangular matrix. The zero
|
||
|
C elements of the matrix are not referenced, and
|
||
|
C the corresponding elements of the array can be
|
||
|
C used to store other information.
|
||
|
C
|
||
|
C LDT INTEGER
|
||
|
C LDT is the leading dimension of the array T.
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C N is the order of the system.
|
||
|
C
|
||
|
C JOB INTEGER
|
||
|
C = 0 T is lower triangular.
|
||
|
C = nonzero T is upper triangular.
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C RCOND REAL
|
||
|
C an estimate of the reciprocal condition of T .
|
||
|
C For the system T*X = B , relative perturbations
|
||
|
C in T and B of size EPSILON may cause
|
||
|
C relative perturbations in X of size EPSILON/RCOND .
|
||
|
C If RCOND is so small that the logical expression
|
||
|
C 1.0 + RCOND .EQ. 1.0
|
||
|
C is true, then T may be singular to working
|
||
|
C precision. In particular, RCOND is zero if
|
||
|
C exact singularity is detected or the estimate
|
||
|
C underflows.
|
||
|
C
|
||
|
C Z REAL(N)
|
||
|
C a work vector whose contents are usually unimportant.
|
||
|
C If T is close to a singular matrix, then Z is
|
||
|
C an approximate null vector in the sense that
|
||
|
C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED SASUM, SAXPY, SSCAL
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 780814 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE STRCO
|
||
|
INTEGER LDT,N,JOB
|
||
|
REAL T(LDT,*),Z(*)
|
||
|
REAL RCOND
|
||
|
C
|
||
|
REAL W,WK,WKM,EK
|
||
|
REAL TNORM,YNORM,S,SM,SASUM
|
||
|
INTEGER I1,J,J1,J2,K,KK,L
|
||
|
LOGICAL LOWER
|
||
|
C***FIRST EXECUTABLE STATEMENT STRCO
|
||
|
LOWER = JOB .EQ. 0
|
||
|
C
|
||
|
C COMPUTE 1-NORM OF T
|
||
|
C
|
||
|
TNORM = 0.0E0
|
||
|
DO 10 J = 1, N
|
||
|
L = J
|
||
|
IF (LOWER) L = N + 1 - J
|
||
|
I1 = 1
|
||
|
IF (LOWER) I1 = J
|
||
|
TNORM = MAX(TNORM,SASUM(L,T(I1,J),1))
|
||
|
10 CONTINUE
|
||
|
C
|
||
|
C RCOND = 1/(NORM(T)*(ESTIMATE OF NORM(INVERSE(T)))) .
|
||
|
C ESTIMATE = NORM(Z)/NORM(Y) WHERE T*Z = Y AND TRANS(T)*Y = E .
|
||
|
C TRANS(T) IS THE TRANSPOSE OF T .
|
||
|
C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
|
||
|
C GROWTH IN THE ELEMENTS OF Y .
|
||
|
C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
|
||
|
C
|
||
|
C SOLVE TRANS(T)*Y = E
|
||
|
C
|
||
|
EK = 1.0E0
|
||
|
DO 20 J = 1, N
|
||
|
Z(J) = 0.0E0
|
||
|
20 CONTINUE
|
||
|
DO 100 KK = 1, N
|
||
|
K = KK
|
||
|
IF (LOWER) K = N + 1 - KK
|
||
|
IF (Z(K) .NE. 0.0E0) EK = SIGN(EK,-Z(K))
|
||
|
IF (ABS(EK-Z(K)) .LE. ABS(T(K,K))) GO TO 30
|
||
|
S = ABS(T(K,K))/ABS(EK-Z(K))
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
EK = S*EK
|
||
|
30 CONTINUE
|
||
|
WK = EK - Z(K)
|
||
|
WKM = -EK - Z(K)
|
||
|
S = ABS(WK)
|
||
|
SM = ABS(WKM)
|
||
|
IF (T(K,K) .EQ. 0.0E0) GO TO 40
|
||
|
WK = WK/T(K,K)
|
||
|
WKM = WKM/T(K,K)
|
||
|
GO TO 50
|
||
|
40 CONTINUE
|
||
|
WK = 1.0E0
|
||
|
WKM = 1.0E0
|
||
|
50 CONTINUE
|
||
|
IF (KK .EQ. N) GO TO 90
|
||
|
J1 = K + 1
|
||
|
IF (LOWER) J1 = 1
|
||
|
J2 = N
|
||
|
IF (LOWER) J2 = K - 1
|
||
|
DO 60 J = J1, J2
|
||
|
SM = SM + ABS(Z(J)+WKM*T(K,J))
|
||
|
Z(J) = Z(J) + WK*T(K,J)
|
||
|
S = S + ABS(Z(J))
|
||
|
60 CONTINUE
|
||
|
IF (S .GE. SM) GO TO 80
|
||
|
W = WKM - WK
|
||
|
WK = WKM
|
||
|
DO 70 J = J1, J2
|
||
|
Z(J) = Z(J) + W*T(K,J)
|
||
|
70 CONTINUE
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
Z(K) = WK
|
||
|
100 CONTINUE
|
||
|
S = 1.0E0/SASUM(N,Z,1)
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
C
|
||
|
YNORM = 1.0E0
|
||
|
C
|
||
|
C SOLVE T*Z = Y
|
||
|
C
|
||
|
DO 130 KK = 1, N
|
||
|
K = N + 1 - KK
|
||
|
IF (LOWER) K = KK
|
||
|
IF (ABS(Z(K)) .LE. ABS(T(K,K))) GO TO 110
|
||
|
S = ABS(T(K,K))/ABS(Z(K))
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
110 CONTINUE
|
||
|
IF (T(K,K) .NE. 0.0E0) Z(K) = Z(K)/T(K,K)
|
||
|
IF (T(K,K) .EQ. 0.0E0) Z(K) = 1.0E0
|
||
|
I1 = 1
|
||
|
IF (LOWER) I1 = K + 1
|
||
|
IF (KK .GE. N) GO TO 120
|
||
|
W = -Z(K)
|
||
|
CALL SAXPY(N-KK,W,T(I1,K),1,Z(I1),1)
|
||
|
120 CONTINUE
|
||
|
130 CONTINUE
|
||
|
C MAKE ZNORM = 1.0
|
||
|
S = 1.0E0/SASUM(N,Z,1)
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
C
|
||
|
IF (TNORM .NE. 0.0E0) RCOND = YNORM/TNORM
|
||
|
IF (TNORM .EQ. 0.0E0) RCOND = 0.0E0
|
||
|
RETURN
|
||
|
END
|