OpenLibm/slatec/strmm.f

362 lines
12 KiB
FortranFixed
Raw Normal View History

*DECK STRMM
SUBROUTINE STRMM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
$ B, LDB)
C***BEGIN PROLOGUE STRMM
C***PURPOSE Multiply a real general matrix by a real triangular matrix.
C***LIBRARY SLATEC (BLAS)
C***CATEGORY D1B6
C***TYPE SINGLE PRECISION (STRMM-S, DTRMM-D, CTRMM-C)
C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
C***AUTHOR Dongarra, J., (ANL)
C Duff, I., (AERE)
C Du Croz, J., (NAG)
C Hammarling, S. (NAG)
C***DESCRIPTION
C
C STRMM performs one of the matrix-matrix operations
C
C B := alpha*op( A )*B, or B := alpha*B*op( A ),
C
C where alpha is a scalar, B is an m by n matrix, A is a unit, or
C non-unit, upper or lower triangular matrix and op( A ) is one of
C
C op( A ) = A or op( A ) = A'.
C
C Parameters
C ==========
C
C SIDE - CHARACTER*1.
C On entry, SIDE specifies whether op( A ) multiplies B from
C the left or right as follows:
C
C SIDE = 'L' or 'l' B := alpha*op( A )*B.
C
C SIDE = 'R' or 'r' B := alpha*B*op( A ).
C
C Unchanged on exit.
C
C UPLO - CHARACTER*1.
C On entry, UPLO specifies whether the matrix A is an upper or
C lower triangular matrix as follows:
C
C UPLO = 'U' or 'u' A is an upper triangular matrix.
C
C UPLO = 'L' or 'l' A is a lower triangular matrix.
C
C Unchanged on exit.
C
C TRANSA - CHARACTER*1.
C On entry, TRANSA specifies the form of op( A ) to be used in
C the matrix multiplication as follows:
C
C TRANSA = 'N' or 'n' op( A ) = A.
C
C TRANSA = 'T' or 't' op( A ) = A'.
C
C TRANSA = 'C' or 'c' op( A ) = A'.
C
C Unchanged on exit.
C
C DIAG - CHARACTER*1.
C On entry, DIAG specifies whether or not A is unit triangular
C as follows:
C
C DIAG = 'U' or 'u' A is assumed to be unit triangular.
C
C DIAG = 'N' or 'n' A is not assumed to be unit
C triangular.
C
C Unchanged on exit.
C
C M - INTEGER.
C On entry, M specifies the number of rows of B. M must be at
C least zero.
C Unchanged on exit.
C
C N - INTEGER.
C On entry, N specifies the number of columns of B. N must be
C at least zero.
C Unchanged on exit.
C
C ALPHA - REAL .
C On entry, ALPHA specifies the scalar alpha. When alpha is
C zero then A is not referenced and B need not be set before
C entry.
C Unchanged on exit.
C
C A - REAL array of DIMENSION ( LDA, k ), where k is m
C when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
C Before entry with UPLO = 'U' or 'u', the leading k by k
C upper triangular part of the array A must contain the upper
C triangular matrix and the strictly lower triangular part of
C A is not referenced.
C Before entry with UPLO = 'L' or 'l', the leading k by k
C lower triangular part of the array A must contain the lower
C triangular matrix and the strictly upper triangular part of
C A is not referenced.
C Note that when DIAG = 'U' or 'u', the diagonal elements of
C A are not referenced either, but are assumed to be unity.
C Unchanged on exit.
C
C LDA - INTEGER.
C On entry, LDA specifies the first dimension of A as declared
C in the calling (sub) program. When SIDE = 'L' or 'l' then
C LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
C then LDA must be at least max( 1, n ).
C Unchanged on exit.
C
C B - REAL array of DIMENSION ( LDB, n ).
C Before entry, the leading m by n part of the array B must
C contain the matrix B, and on exit is overwritten by the
C transformed matrix.
C
C LDB - INTEGER.
C On entry, LDB specifies the first dimension of B as declared
C in the calling (sub) program. LDB must be at least
C max( 1, m ).
C Unchanged on exit.
C
C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
C A set of level 3 basic linear algebra subprograms.
C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
C***ROUTINES CALLED LSAME, XERBLA
C***REVISION HISTORY (YYMMDD)
C 890208 DATE WRITTEN
C 910605 Modified to meet SLATEC prologue standards. Only comment
C lines were modified. (BKS)
C***END PROLOGUE STRMM
C .. Scalar Arguments ..
CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
INTEGER M, N, LDA, LDB
REAL ALPHA
C .. Array Arguments ..
REAL A( LDA, * ), B( LDB, * )
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Local Scalars ..
LOGICAL LSIDE, NOUNIT, UPPER
INTEGER I, INFO, J, K, NROWA
REAL TEMP
C .. Parameters ..
REAL ONE , ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
C***FIRST EXECUTABLE STATEMENT STRMM
C
C Test the input parameters.
C
LSIDE = LSAME( SIDE , 'L' )
IF( LSIDE )THEN
NROWA = M
ELSE
NROWA = N
END IF
NOUNIT = LSAME( DIAG , 'N' )
UPPER = LSAME( UPLO , 'U' )
C
INFO = 0
IF( ( .NOT.LSIDE ).AND.
$ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN
INFO = 1
ELSE IF( ( .NOT.UPPER ).AND.
$ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
INFO = 2
ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
$ ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
$ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN
INFO = 3
ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND.
$ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN
INFO = 4
ELSE IF( M .LT.0 )THEN
INFO = 5
ELSE IF( N .LT.0 )THEN
INFO = 6
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
INFO = 9
ELSE IF( LDB.LT.MAX( 1, M ) )THEN
INFO = 11
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'STRMM ', INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 )
$ RETURN
C
C And when alpha.eq.zero.
C
IF( ALPHA.EQ.ZERO )THEN
DO 20, J = 1, N
DO 10, I = 1, M
B( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
RETURN
END IF
C
C Start the operations.
C
IF( LSIDE )THEN
IF( LSAME( TRANSA, 'N' ) )THEN
C
C Form B := alpha*A*B.
C
IF( UPPER )THEN
DO 50, J = 1, N
DO 40, K = 1, M
IF( B( K, J ).NE.ZERO )THEN
TEMP = ALPHA*B( K, J )
DO 30, I = 1, K - 1
B( I, J ) = B( I, J ) + TEMP*A( I, K )
30 CONTINUE
IF( NOUNIT )
$ TEMP = TEMP*A( K, K )
B( K, J ) = TEMP
END IF
40 CONTINUE
50 CONTINUE
ELSE
DO 80, J = 1, N
DO 70 K = M, 1, -1
IF( B( K, J ).NE.ZERO )THEN
TEMP = ALPHA*B( K, J )
B( K, J ) = TEMP
IF( NOUNIT )
$ B( K, J ) = B( K, J )*A( K, K )
DO 60, I = K + 1, M
B( I, J ) = B( I, J ) + TEMP*A( I, K )
60 CONTINUE
END IF
70 CONTINUE
80 CONTINUE
END IF
ELSE
C
C Form B := alpha*B*A'.
C
IF( UPPER )THEN
DO 110, J = 1, N
DO 100, I = M, 1, -1
TEMP = B( I, J )
IF( NOUNIT )
$ TEMP = TEMP*A( I, I )
DO 90, K = 1, I - 1
TEMP = TEMP + A( K, I )*B( K, J )
90 CONTINUE
B( I, J ) = ALPHA*TEMP
100 CONTINUE
110 CONTINUE
ELSE
DO 140, J = 1, N
DO 130, I = 1, M
TEMP = B( I, J )
IF( NOUNIT )
$ TEMP = TEMP*A( I, I )
DO 120, K = I + 1, M
TEMP = TEMP + A( K, I )*B( K, J )
120 CONTINUE
B( I, J ) = ALPHA*TEMP
130 CONTINUE
140 CONTINUE
END IF
END IF
ELSE
IF( LSAME( TRANSA, 'N' ) )THEN
C
C Form B := alpha*B*A.
C
IF( UPPER )THEN
DO 180, J = N, 1, -1
TEMP = ALPHA
IF( NOUNIT )
$ TEMP = TEMP*A( J, J )
DO 150, I = 1, M
B( I, J ) = TEMP*B( I, J )
150 CONTINUE
DO 170, K = 1, J - 1
IF( A( K, J ).NE.ZERO )THEN
TEMP = ALPHA*A( K, J )
DO 160, I = 1, M
B( I, J ) = B( I, J ) + TEMP*B( I, K )
160 CONTINUE
END IF
170 CONTINUE
180 CONTINUE
ELSE
DO 220, J = 1, N
TEMP = ALPHA
IF( NOUNIT )
$ TEMP = TEMP*A( J, J )
DO 190, I = 1, M
B( I, J ) = TEMP*B( I, J )
190 CONTINUE
DO 210, K = J + 1, N
IF( A( K, J ).NE.ZERO )THEN
TEMP = ALPHA*A( K, J )
DO 200, I = 1, M
B( I, J ) = B( I, J ) + TEMP*B( I, K )
200 CONTINUE
END IF
210 CONTINUE
220 CONTINUE
END IF
ELSE
C
C Form B := alpha*B*A'.
C
IF( UPPER )THEN
DO 260, K = 1, N
DO 240, J = 1, K - 1
IF( A( J, K ).NE.ZERO )THEN
TEMP = ALPHA*A( J, K )
DO 230, I = 1, M
B( I, J ) = B( I, J ) + TEMP*B( I, K )
230 CONTINUE
END IF
240 CONTINUE
TEMP = ALPHA
IF( NOUNIT )
$ TEMP = TEMP*A( K, K )
IF( TEMP.NE.ONE )THEN
DO 250, I = 1, M
B( I, K ) = TEMP*B( I, K )
250 CONTINUE
END IF
260 CONTINUE
ELSE
DO 300, K = N, 1, -1
DO 280, J = K + 1, N
IF( A( J, K ).NE.ZERO )THEN
TEMP = ALPHA*A( J, K )
DO 270, I = 1, M
B( I, J ) = B( I, J ) + TEMP*B( I, K )
270 CONTINUE
END IF
280 CONTINUE
TEMP = ALPHA
IF( NOUNIT )
$ TEMP = TEMP*A( K, K )
IF( TEMP.NE.ONE )THEN
DO 290, I = 1, M
B( I, K ) = TEMP*B( I, K )
290 CONTINUE
END IF
300 CONTINUE
END IF
END IF
END IF
C
RETURN
C
C End of STRMM .
C
END