OpenLibm/slatec/u12us.f

155 lines
3.4 KiB
FortranFixed
Raw Normal View History

*DECK U12US
SUBROUTINE U12US (A, MDA, M, N, B, MDB, NB, MODE, KRANK, RNORM, H,
+ W, IR, IC)
C***BEGIN PROLOGUE U12US
C***SUBSIDIARY
C***PURPOSE Subsidiary to ULSIA
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (U12US-S, DU12US-D)
C***AUTHOR (UNKNOWN)
C***DESCRIPTION
C
C Given the Householder LQ factorization of A, this
C subroutine solves the system AX=B. If the system
C is of reduced rank, this routine returns a solution
C according to the selected mode.
C
C Note - If MODE.NE.2, W is never accessed.
C
C***SEE ALSO ULSIA
C***ROUTINES CALLED SAXPY, SDOT, SNRM2, SSWAP
C***REVISION HISTORY (YYMMDD)
C 810801 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C***END PROLOGUE U12US
DIMENSION A(MDA,*),B(MDB,*),RNORM(*),H(*),W(*)
INTEGER IC(*),IR(*)
C***FIRST EXECUTABLE STATEMENT U12US
K=KRANK
KP1=K+1
C
C RANK=0
C
IF(K.GT.0) GO TO 410
DO 404 JB=1,NB
RNORM(JB)=SNRM2(M,B(1,JB),1)
404 CONTINUE
DO 406 JB=1,NB
DO 406 I=1,N
B(I,JB)=0.0
406 CONTINUE
RETURN
C
C REORDER B TO REFLECT ROW INTERCHANGES
C
410 CONTINUE
I=0
412 I=I+1
IF(I.EQ.M) GO TO 418
J=IR(I)
IF(J.EQ.I) GO TO 412
IF(J.LT.0) GO TO 412
IR(I)=-IR(I)
DO 413 JB=1,NB
RNORM(JB)=B(I,JB)
413 CONTINUE
IJ=I
414 DO 415 JB=1,NB
B(IJ,JB)=B(J,JB)
415 CONTINUE
IJ=J
J=IR(IJ)
IR(IJ)=-IR(IJ)
IF(J.NE.I) GO TO 414
DO 416 JB=1,NB
B(IJ,JB)=RNORM(JB)
416 CONTINUE
GO TO 412
418 CONTINUE
DO 420 I=1,M
IR(I)=ABS(IR(I))
420 CONTINUE
C
C IF A IS OF REDUCED RANK AND MODE=2,
C APPLY HOUSEHOLDER TRANSFORMATIONS TO B
C
IF(MODE.LT.2 .OR. K.EQ.M) GO TO 440
MMK=M-K
DO 430 JB=1,NB
DO 425 J=1,K
I=KP1-J
TT=-SDOT(MMK,A(KP1,I),1,B(KP1,JB),1)/W(I)
TT=TT-B(I,JB)
CALL SAXPY(MMK,TT,A(KP1,I),1,B(KP1,JB),1)
B(I,JB)=B(I,JB)+TT*W(I)
425 CONTINUE
430 CONTINUE
C
C FIND NORMS OF RESIDUAL VECTOR(S)..(BEFORE OVERWRITE B)
C
440 DO 442 JB=1,NB
RNORM(JB)=SNRM2((M-K),B(KP1,JB),1)
442 CONTINUE
C
C BACK SOLVE LOWER TRIANGULAR L
C
DO 450 JB=1,NB
DO 448 I=1,K
B(I,JB)=B(I,JB)/A(I,I)
IF(I.EQ.K) GO TO 450
IP1=I+1
CALL SAXPY(K-I,-B(I,JB),A(IP1,I),1,B(IP1,JB),1)
448 CONTINUE
450 CONTINUE
C
C
C TRUNCATED SOLUTION
C
IF(K.EQ.N) GO TO 462
DO 460 JB=1,NB
DO 460 I=KP1,N
B(I,JB)=0.0
460 CONTINUE
C
C APPLY HOUSEHOLDER TRANSFORMATIONS TO B
C
462 DO 470 I=1,K
J=KP1-I
TT=A(J,J)
A(J,J)=H(J)
DO 465 JB=1,NB
BB=-SDOT(N-J+1,A(J,J),MDA,B(J,JB),1)/H(J)
CALL SAXPY(N-J+1,BB,A(J,J),MDA,B(J,JB),1)
465 CONTINUE
A(J,J)=TT
470 CONTINUE
C
C
C REORDER B TO REFLECT COLUMN INTERCHANGES
C
I=0
482 I=I+1
IF(I.EQ.N) GO TO 488
J=IC(I)
IF(J.EQ.I) GO TO 482
IF(J.LT.0) GO TO 482
IC(I)=-IC(I)
484 CALL SSWAP(NB,B(J,1),MDB,B(I,1),MDB)
IJ=IC(J)
IC(J)=-IC(J)
J=IJ
IF(J.EQ.I) GO TO 482
GO TO 484
488 CONTINUE
DO 490 I=1,N
IC(I)=ABS(IC(I))
490 CONTINUE
C
C SOLUTION VECTORS ARE IN FIRST N ROWS OF B(,)
C
RETURN
END