mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
194 lines
5.5 KiB
FortranFixed
194 lines
5.5 KiB
FortranFixed
|
*DECK XPQNU
|
||
|
SUBROUTINE XPQNU (NU1, NU2, MU, THETA, ID, PQA, IPQA, IERROR)
|
||
|
C***BEGIN PROLOGUE XPQNU
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE To compute the values of Legendre functions for XLEGF.
|
||
|
C This subroutine calculates initial values of P or Q using
|
||
|
C power series, then performs forward nu-wise recurrence to
|
||
|
C obtain P(-MU,NU,X), Q(0,NU,X), or Q(1,NU,X). The nu-wise
|
||
|
C recurrence is stable for P for all mu and for Q for mu=0,1.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY C3A2, C9
|
||
|
C***TYPE SINGLE PRECISION (XPQNU-S, DXPQNU-D)
|
||
|
C***KEYWORDS LEGENDRE FUNCTIONS
|
||
|
C***AUTHOR Smith, John M., (NBS and George Mason University)
|
||
|
C***ROUTINES CALLED XADD, XADJ, XPSI
|
||
|
C***COMMON BLOCKS XBLK1
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 820728 DATE WRITTEN
|
||
|
C 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
|
||
|
C 901019 Revisions to prologue. (DWL and WRB)
|
||
|
C 901106 Changed all specific intrinsics to generic. (WRB)
|
||
|
C Corrected order of sections in prologue and added TYPE
|
||
|
C section. (WRB)
|
||
|
C 920127 Revised PURPOSE section of prologue. (DWL)
|
||
|
C***END PROLOGUE XPQNU
|
||
|
REAL A,NU,NU1,NU2,PQ,PQA,XPSI,R,THETA,W,X,X1,X2,XS,
|
||
|
1 Y,Z
|
||
|
REAL DI,DMU,PQ1,PQ2,FACTMU,FLOK
|
||
|
DIMENSION PQA(*),IPQA(*)
|
||
|
COMMON /XBLK1/ NBITSF
|
||
|
SAVE /XBLK1/
|
||
|
C
|
||
|
C J0, IPSIK, AND IPSIX ARE INITIALIZED IN THIS SUBROUTINE.
|
||
|
C J0 IS THE NUMBER OF TERMS USED IN SERIES EXPANSION
|
||
|
C IN SUBROUTINE XPQNU.
|
||
|
C IPSIK, IPSIX ARE VALUES OF K AND X RESPECTIVELY
|
||
|
C USED IN THE CALCULATION OF THE XPSI FUNCTION.
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT XPQNU
|
||
|
IERROR=0
|
||
|
J0=NBITSF
|
||
|
IPSIK=1+(NBITSF/10)
|
||
|
IPSIX=5*IPSIK
|
||
|
IPQ=0
|
||
|
C FIND NU IN INTERVAL [-.5,.5) IF ID=2 ( CALCULATION OF Q )
|
||
|
NU=MOD(NU1,1.)
|
||
|
IF(NU.GE..5) NU=NU-1.
|
||
|
C FIND NU IN INTERVAL (-1.5,-.5] IF ID=1,3, OR 4 ( CALC. OF P )
|
||
|
IF(ID.NE.2.AND.NU.GT.-.5) NU=NU-1.
|
||
|
C CALCULATE MU FACTORIAL
|
||
|
K=MU
|
||
|
DMU=MU
|
||
|
IF(MU.LE.0) GO TO 60
|
||
|
FACTMU=1.
|
||
|
IF=0
|
||
|
DO 50 I=1,K
|
||
|
FACTMU=FACTMU*I
|
||
|
50 CALL XADJ(FACTMU,IF,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
60 IF(K.EQ.0) FACTMU=1.
|
||
|
IF(K.EQ.0) IF=0
|
||
|
C
|
||
|
C X=COS(THETA)
|
||
|
C Y=SIN(THETA/2)**2=(1-X)/2=.5-.5*X
|
||
|
C R=TAN(THETA/2)=SQRT((1-X)/(1+X)
|
||
|
C
|
||
|
X=COS(THETA)
|
||
|
Y=SIN(THETA/2.)**2
|
||
|
R=TAN(THETA/2.)
|
||
|
C
|
||
|
C USE ASCENDING SERIES TO CALCULATE TWO VALUES OF P OR Q
|
||
|
C FOR USE AS STARTING VALUES IN RECURRENCE RELATION.
|
||
|
C
|
||
|
PQ2=0.0
|
||
|
DO 100 J=1,2
|
||
|
IPQ1=0
|
||
|
IF(ID.EQ.2) GO TO 80
|
||
|
C
|
||
|
C SERIES FOR P ( ID = 1, 3, OR 4 )
|
||
|
C P(-MU,NU,X)=1./FACTORIAL(MU)*SQRT(((1.-X)/(1.+X))**MU)
|
||
|
C *SUM(FROM 0 TO J0-1)A(J)*(.5-.5*X)**J
|
||
|
C
|
||
|
IPQ=0
|
||
|
PQ=1.
|
||
|
A=1.
|
||
|
IA=0
|
||
|
DO 65 I=2,J0
|
||
|
DI=I
|
||
|
A=A*Y*(DI-2.-NU)*(DI-1.+NU)/((DI-1.+DMU)*(DI-1.))
|
||
|
CALL XADJ(A,IA,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
IF(A.EQ.0.) GO TO 66
|
||
|
CALL XADD(PQ,IPQ,A,IA,PQ,IPQ,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
65 CONTINUE
|
||
|
66 CONTINUE
|
||
|
IF(MU.LE.0) GO TO 90
|
||
|
X2=R
|
||
|
X1=PQ
|
||
|
K=MU
|
||
|
DO 77 I=1,K
|
||
|
X1=X1*X2
|
||
|
77 CALL XADJ(X1,IPQ,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
PQ=X1/FACTMU
|
||
|
IPQ=IPQ-IF
|
||
|
CALL XADJ(PQ,IPQ,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
GO TO 90
|
||
|
C
|
||
|
C Z=-LN(R)=.5*LN((1+X)/(1-X))
|
||
|
C
|
||
|
80 Z=-LOG(R)
|
||
|
W=XPSI(NU+1.,IPSIK,IPSIX)
|
||
|
XS=1./SIN(THETA)
|
||
|
C
|
||
|
C SERIES SUMMATION FOR Q ( ID = 2 )
|
||
|
C Q(0,NU,X)=SUM(FROM 0 TO J0-1)((.5*LN((1+X)/(1-X))
|
||
|
C +XPSI(J+1,IPSIK,IPSIX)-XPSI(NU+1,IPSIK,IPSIX)))*A(J)*(.5-.5*X)**J
|
||
|
C
|
||
|
C Q(1,NU,X)=-SQRT(1./(1.-X**2))+SQRT((1-X)/(1+X))
|
||
|
C *SUM(FROM 0 T0 J0-1)(-NU*(NU+1)/2*LN((1+X)/(1-X))
|
||
|
C +(J-NU)*(J+NU+1)/(2*(J+1))+NU*(NU+1)*
|
||
|
C (XPSI(NU+1,IPSIK,IPSIX)-XPSI(J+1,IPSIK,IPSIX))*A(J)*(.5-.5*X)**J
|
||
|
C
|
||
|
C NOTE, IN THIS LOOP K=J+1
|
||
|
C
|
||
|
PQ=0.
|
||
|
IPQ=0
|
||
|
IA=0
|
||
|
A=1.
|
||
|
DO 85 K=1,J0
|
||
|
FLOK=K
|
||
|
IF(K.EQ.1) GO TO 81
|
||
|
A=A*Y*(FLOK-2.-NU)*(FLOK-1.+NU)/((FLOK-1.+DMU)*(FLOK-1.))
|
||
|
CALL XADJ(A,IA,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
81 CONTINUE
|
||
|
IF(MU.GE.1) GO TO 83
|
||
|
X1=(XPSI(FLOK,IPSIK,IPSIX)-W+Z)*A
|
||
|
IX1=IA
|
||
|
CALL XADD(PQ,IPQ,X1,IX1,PQ,IPQ,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
GO TO 85
|
||
|
83 X1=(NU*(NU+1.)*(Z-W+XPSI(FLOK,IPSIK,IPSIX))+(NU-FLOK+1.)
|
||
|
1 *(NU+FLOK)/(2.*FLOK))*A
|
||
|
IX1=IA
|
||
|
CALL XADD(PQ,IPQ,X1,IX1,PQ,IPQ,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
85 CONTINUE
|
||
|
IF(MU.GE.1) PQ=-R*PQ
|
||
|
IXS=0
|
||
|
IF(MU.GE.1) CALL XADD(PQ,IPQ,-XS,IXS,PQ,IPQ,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
IF(J.EQ.2) MU=-MU
|
||
|
IF(J.EQ.2) DMU=-DMU
|
||
|
90 IF(J.EQ.1) PQ2=PQ
|
||
|
IF(J.EQ.1) IPQ2=IPQ
|
||
|
NU=NU+1.
|
||
|
100 CONTINUE
|
||
|
K=0
|
||
|
IF(NU-1.5.LT.NU1) GO TO 120
|
||
|
K=K+1
|
||
|
PQA(K)=PQ2
|
||
|
IPQA(K)=IPQ2
|
||
|
IF(NU.GT.NU2+.5) RETURN
|
||
|
120 PQ1=PQ
|
||
|
IPQ1=IPQ
|
||
|
IF(NU.LT.NU1+.5) GO TO 130
|
||
|
K=K+1
|
||
|
PQA(K)=PQ
|
||
|
IPQA(K)=IPQ
|
||
|
IF(NU.GT.NU2+.5) RETURN
|
||
|
C
|
||
|
C FORWARD NU-WISE RECURRENCE FOR F(MU,NU,X) FOR FIXED MU
|
||
|
C USING
|
||
|
C (NU+MU+1)*F(MU,NU,X)=(2.*NU+1)*F(MU,NU,X)-(NU-MU)*F(MU,NU-1,X)
|
||
|
C WHERE F(MU,NU,X) MAY BE P(-MU,NU,X) OR IF MU IS REPLACED
|
||
|
C BY -MU THEN F(MU,NU,X) MAY BE Q(MU,NU,X).
|
||
|
C NOTE, IN THIS LOOP, NU=NU+1
|
||
|
C
|
||
|
130 X1=(2.*NU-1.)/(NU+DMU)*X*PQ1
|
||
|
X2=(NU-1.-DMU)/(NU+DMU)*PQ2
|
||
|
CALL XADD(X1,IPQ1,-X2,IPQ2,PQ,IPQ,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
CALL XADJ(PQ,IPQ,IERROR)
|
||
|
IF (IERROR.NE.0) RETURN
|
||
|
NU=NU+1.
|
||
|
PQ2=PQ1
|
||
|
IPQ2=IPQ1
|
||
|
GO TO 120
|
||
|
C
|
||
|
END
|