OpenLibm/slatec/xqnu.f

125 lines
3.2 KiB
FortranFixed
Raw Normal View History

*DECK XQNU
SUBROUTINE XQNU (NU1, NU2, MU1, THETA, X, SX, ID, PQA, IPQA,
1 IERROR)
C***BEGIN PROLOGUE XQNU
C***SUBSIDIARY
C***PURPOSE To compute the values of Legendre functions for XLEGF.
C Method: backward nu-wise recurrence for Q(MU,NU,X) for
C fixed mu to obtain Q(MU1,NU1,X), Q(MU1,NU1+1,X), ...,
C Q(MU1,NU2,X).
C***LIBRARY SLATEC
C***CATEGORY C3A2, C9
C***TYPE SINGLE PRECISION (XQNU-S, DXQNU-D)
C***KEYWORDS LEGENDRE FUNCTIONS
C***AUTHOR Smith, John M., (NBS and George Mason University)
C***ROUTINES CALLED XADD, XADJ, XPQNU
C***REVISION HISTORY (YYMMDD)
C 820728 DATE WRITTEN
C 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Corrected order of sections in prologue and added TYPE
C section. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE XQNU
DIMENSION PQA(*),IPQA(*)
REAL DMU,NU,NU1,NU2,PQ,PQA,PQ1,PQ2,SX,X,X1,X2
REAL THETA,PQL1,PQL2
C***FIRST EXECUTABLE STATEMENT XQNU
IERROR=0
K=0
PQ2=0.0
IPQ2=0
PQL2=0.0
IPQL2=0
IF(MU1.EQ.1) GO TO 290
MU=0
C
C CALL XPQNU TO OBTAIN Q(0.,NU2,X) AND Q(0.,NU2-1,X)
C
CALL XPQNU(NU1,NU2,MU,THETA,ID,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
IF(MU1.EQ.0) RETURN
K=(NU2-NU1+1.5)
PQ2=PQA(K)
IPQ2=IPQA(K)
PQL2=PQA(K-1)
IPQL2=IPQA(K-1)
290 MU=1
C
C CALL XPQNU TO OBTAIN Q(1.,NU2,X) AND Q(1.,NU2-1,X)
C
CALL XPQNU(NU1,NU2,MU,THETA,ID,PQA,IPQA,IERROR)
IF (IERROR.NE.0) RETURN
IF(MU1.EQ.1) RETURN
NU=NU2
PQ1=PQA(K)
IPQ1=IPQA(K)
PQL1=PQA(K-1)
IPQL1=IPQA(K-1)
300 MU=1
DMU=1.
320 CONTINUE
C
C FORWARD RECURRENCE IN MU TO OBTAIN Q(MU1,NU2,X) AND
C Q(MU1,NU2-1,X) USING
C Q(MU+1,NU,X)=-2.*MU*X*SQRT(1./(1.-X**2))*Q(MU,NU,X)
C -(NU+MU)*(NU-MU+1.)*Q(MU-1,NU,X)
C
C FIRST FOR NU=NU2
C
X1=-2.*DMU*X*SX*PQ1
X2=(NU+DMU)*(NU-DMU+1.)*PQ2
CALL XADD(X1,IPQ1,-X2,IPQ2,PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
CALL XADJ(PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
PQ2=PQ1
IPQ2=IPQ1
PQ1=PQ
IPQ1=IPQ
MU=MU+1
DMU=DMU+1.
IF(MU.LT.MU1) GO TO 320
PQA(K)=PQ
IPQA(K)=IPQ
IF(K.EQ.1) RETURN
IF(NU.LT.NU2) GO TO 340
C
C THEN FOR NU=NU2-1
C
NU=NU-1.
PQ2=PQL2
IPQ2=IPQL2
PQ1=PQL1
IPQ1=IPQL1
K=K-1
GO TO 300
C
C BACKWARD RECURRENCE IN NU TO OBTAIN
C Q(MU1,NU1,X),Q(MU1,NU1+1,X),....,Q(MU1,NU2,X)
C USING
C (NU-MU+1.)*Q(MU,NU+1,X)=
C (2.*NU+1.)*X*Q(MU,NU,X)-(NU+MU)*Q(MU,NU-1,X)
C
340 PQ1=PQA(K)
IPQ1=IPQA(K)
PQ2=PQA(K+1)
IPQ2=IPQA(K+1)
350 IF(NU.LE.NU1) RETURN
K=K-1
X1=(2.*NU+1.)*X*PQ1/(NU+DMU)
X2=-(NU-DMU+1.)*PQ2/(NU+DMU)
CALL XADD(X1,IPQ1,X2,IPQ2,PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
CALL XADJ(PQ,IPQ,IERROR)
IF (IERROR.NE.0) RETURN
PQ2=PQ1
IPQ2=IPQ1
PQ1=PQ
IPQ1=IPQ
PQA(K)=PQ
IPQA(K)=IPQ
NU=NU-1.
GO TO 350
END