mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-06 00:43:40 +01:00
386 lines
8.6 KiB
C
386 lines
8.6 KiB
C
|
/*
|
||
|
* ====================================================
|
||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||
|
*
|
||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||
|
* Permission to use, copy, modify, and distribute this
|
||
|
* software is freely granted, provided that this notice
|
||
|
* is preserved.
|
||
|
* ====================================================
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* from: @(#)fdlibm.h 5.1 93/09/24
|
||
|
* $FreeBSD: src/lib/msun/src/math_private.h,v 1.31 2010/12/05 22:11:22 das Exp $
|
||
|
*/
|
||
|
|
||
|
#ifndef _MATH_PRIVATE_H_
|
||
|
#define _MATH_PRIVATE_H_
|
||
|
|
||
|
#include <sys/types.h>
|
||
|
#include <machine/endian.h>
|
||
|
|
||
|
#ifdef __APPLE__
|
||
|
#define uint32_t u_int32_t
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* The original fdlibm code used statements like:
|
||
|
* n0 = ((*(int*)&one)>>29)^1; * index of high word *
|
||
|
* ix0 = *(n0+(int*)&x); * high word of x *
|
||
|
* ix1 = *((1-n0)+(int*)&x); * low word of x *
|
||
|
* to dig two 32 bit words out of the 64 bit IEEE floating point
|
||
|
* value. That is non-ANSI, and, moreover, the gcc instruction
|
||
|
* scheduler gets it wrong. We instead use the following macros.
|
||
|
* Unlike the original code, we determine the endianness at compile
|
||
|
* time, not at run time; I don't see much benefit to selecting
|
||
|
* endianness at run time.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* A union which permits us to convert between a double and two 32 bit
|
||
|
* ints.
|
||
|
*/
|
||
|
|
||
|
#ifdef __arm__
|
||
|
#if defined(__VFP_FP__)
|
||
|
#define IEEE_WORD_ORDER BYTE_ORDER
|
||
|
#else
|
||
|
#define IEEE_WORD_ORDER BIG_ENDIAN
|
||
|
#endif
|
||
|
#else /* __arm__ */
|
||
|
#define IEEE_WORD_ORDER BYTE_ORDER
|
||
|
#endif
|
||
|
|
||
|
#if IEEE_WORD_ORDER == BIG_ENDIAN
|
||
|
|
||
|
typedef union
|
||
|
{
|
||
|
double value;
|
||
|
struct
|
||
|
{
|
||
|
u_int32_t msw;
|
||
|
u_int32_t lsw;
|
||
|
} parts;
|
||
|
} ieee_double_shape_type;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#if IEEE_WORD_ORDER == LITTLE_ENDIAN
|
||
|
|
||
|
typedef union
|
||
|
{
|
||
|
double value;
|
||
|
struct
|
||
|
{
|
||
|
u_int32_t lsw;
|
||
|
u_int32_t msw;
|
||
|
} parts;
|
||
|
} ieee_double_shape_type;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/* Get two 32 bit ints from a double. */
|
||
|
|
||
|
#define EXTRACT_WORDS(ix0,ix1,d) \
|
||
|
do { \
|
||
|
ieee_double_shape_type ew_u; \
|
||
|
ew_u.value = (d); \
|
||
|
(ix0) = ew_u.parts.msw; \
|
||
|
(ix1) = ew_u.parts.lsw; \
|
||
|
} while (0)
|
||
|
|
||
|
/* Get the more significant 32 bit int from a double. */
|
||
|
|
||
|
#define GET_HIGH_WORD(i,d) \
|
||
|
do { \
|
||
|
ieee_double_shape_type gh_u; \
|
||
|
gh_u.value = (d); \
|
||
|
(i) = gh_u.parts.msw; \
|
||
|
} while (0)
|
||
|
|
||
|
/* Get the less significant 32 bit int from a double. */
|
||
|
|
||
|
#define GET_LOW_WORD(i,d) \
|
||
|
do { \
|
||
|
ieee_double_shape_type gl_u; \
|
||
|
gl_u.value = (d); \
|
||
|
(i) = gl_u.parts.lsw; \
|
||
|
} while (0)
|
||
|
|
||
|
/* Set a double from two 32 bit ints. */
|
||
|
|
||
|
#define INSERT_WORDS(d,ix0,ix1) \
|
||
|
do { \
|
||
|
ieee_double_shape_type iw_u; \
|
||
|
iw_u.parts.msw = (ix0); \
|
||
|
iw_u.parts.lsw = (ix1); \
|
||
|
(d) = iw_u.value; \
|
||
|
} while (0)
|
||
|
|
||
|
/* Set the more significant 32 bits of a double from an int. */
|
||
|
|
||
|
#define SET_HIGH_WORD(d,v) \
|
||
|
do { \
|
||
|
ieee_double_shape_type sh_u; \
|
||
|
sh_u.value = (d); \
|
||
|
sh_u.parts.msw = (v); \
|
||
|
(d) = sh_u.value; \
|
||
|
} while (0)
|
||
|
|
||
|
/* Set the less significant 32 bits of a double from an int. */
|
||
|
|
||
|
#define SET_LOW_WORD(d,v) \
|
||
|
do { \
|
||
|
ieee_double_shape_type sl_u; \
|
||
|
sl_u.value = (d); \
|
||
|
sl_u.parts.lsw = (v); \
|
||
|
(d) = sl_u.value; \
|
||
|
} while (0)
|
||
|
|
||
|
/*
|
||
|
* A union which permits us to convert between a float and a 32 bit
|
||
|
* int.
|
||
|
*/
|
||
|
|
||
|
typedef union
|
||
|
{
|
||
|
float value;
|
||
|
/* FIXME: Assumes 32 bit int. */
|
||
|
unsigned int word;
|
||
|
} ieee_float_shape_type;
|
||
|
|
||
|
/* Get a 32 bit int from a float. */
|
||
|
|
||
|
#define GET_FLOAT_WORD(i,d) \
|
||
|
do { \
|
||
|
ieee_float_shape_type gf_u; \
|
||
|
gf_u.value = (d); \
|
||
|
(i) = gf_u.word; \
|
||
|
} while (0)
|
||
|
|
||
|
/* Set a float from a 32 bit int. */
|
||
|
|
||
|
#define SET_FLOAT_WORD(d,i) \
|
||
|
do { \
|
||
|
ieee_float_shape_type sf_u; \
|
||
|
sf_u.word = (i); \
|
||
|
(d) = sf_u.value; \
|
||
|
} while (0)
|
||
|
|
||
|
#ifdef FLT_EVAL_METHOD
|
||
|
/*
|
||
|
* Attempt to get strict C99 semantics for assignment with non-C99 compilers.
|
||
|
*/
|
||
|
#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
|
||
|
#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
|
||
|
#else
|
||
|
#define STRICT_ASSIGN(type, lval, rval) do { \
|
||
|
volatile type __lval; \
|
||
|
\
|
||
|
if (sizeof(type) >= sizeof(double)) \
|
||
|
(lval) = (rval); \
|
||
|
else { \
|
||
|
__lval = (rval); \
|
||
|
(lval) = __lval; \
|
||
|
} \
|
||
|
} while (0)
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Common routine to process the arguments to nan(), nanf(), and nanl().
|
||
|
*/
|
||
|
void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
|
||
|
|
||
|
#ifdef _COMPLEX_H
|
||
|
|
||
|
/*
|
||
|
* C99 specifies that complex numbers have the same representation as
|
||
|
* an array of two elements, where the first element is the real part
|
||
|
* and the second element is the imaginary part.
|
||
|
*/
|
||
|
typedef union {
|
||
|
float complex f;
|
||
|
float a[2];
|
||
|
} float_complex;
|
||
|
typedef union {
|
||
|
double complex f;
|
||
|
double a[2];
|
||
|
} double_complex;
|
||
|
typedef union {
|
||
|
long double complex f;
|
||
|
long double a[2];
|
||
|
} long_double_complex;
|
||
|
#define REALPART(z) ((z).a[0])
|
||
|
#define IMAGPART(z) ((z).a[1])
|
||
|
|
||
|
/*
|
||
|
* Inline functions that can be used to construct complex values.
|
||
|
*
|
||
|
* The C99 standard intends x+I*y to be used for this, but x+I*y is
|
||
|
* currently unusable in general since gcc introduces many overflow,
|
||
|
* underflow, sign and efficiency bugs by rewriting I*y as
|
||
|
* (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
|
||
|
* In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
|
||
|
* to -0.0+I*0.0.
|
||
|
*/
|
||
|
static __inline float complex
|
||
|
cpackf(float x, float y)
|
||
|
{
|
||
|
float_complex z;
|
||
|
|
||
|
REALPART(z) = x;
|
||
|
IMAGPART(z) = y;
|
||
|
return (z.f);
|
||
|
}
|
||
|
|
||
|
static __inline double complex
|
||
|
cpack(double x, double y)
|
||
|
{
|
||
|
double_complex z;
|
||
|
|
||
|
REALPART(z) = x;
|
||
|
IMAGPART(z) = y;
|
||
|
return (z.f);
|
||
|
}
|
||
|
|
||
|
static __inline long double complex
|
||
|
cpackl(long double x, long double y)
|
||
|
{
|
||
|
long_double_complex z;
|
||
|
|
||
|
REALPART(z) = x;
|
||
|
IMAGPART(z) = y;
|
||
|
return (z.f);
|
||
|
}
|
||
|
#endif /* _COMPLEX_H */
|
||
|
|
||
|
#ifdef __GNUCLIKE_ASM
|
||
|
|
||
|
/* Asm versions of some functions. */
|
||
|
|
||
|
#ifdef __amd64__
|
||
|
static __inline int
|
||
|
irint(double x)
|
||
|
{
|
||
|
int n;
|
||
|
|
||
|
asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
|
||
|
return (n);
|
||
|
}
|
||
|
#define HAVE_EFFICIENT_IRINT
|
||
|
#endif
|
||
|
|
||
|
#ifdef __i386__
|
||
|
static __inline int
|
||
|
irint(double x)
|
||
|
{
|
||
|
int n;
|
||
|
|
||
|
asm("fistl %0" : "=m" (n) : "t" (x));
|
||
|
return (n);
|
||
|
}
|
||
|
#define HAVE_EFFICIENT_IRINT
|
||
|
#endif
|
||
|
|
||
|
#endif /* __GNUCLIKE_ASM */
|
||
|
|
||
|
/*
|
||
|
* ieee style elementary functions
|
||
|
*
|
||
|
* We rename functions here to improve other sources' diffability
|
||
|
* against fdlibm.
|
||
|
*/
|
||
|
#define __ieee754_sqrt sqrt
|
||
|
#define __ieee754_acos acos
|
||
|
#define __ieee754_acosh acosh
|
||
|
#define __ieee754_log log
|
||
|
#define __ieee754_log2 log2
|
||
|
#define __ieee754_atanh atanh
|
||
|
#define __ieee754_asin asin
|
||
|
#define __ieee754_atan2 atan2
|
||
|
#define __ieee754_exp exp
|
||
|
#define __ieee754_cosh cosh
|
||
|
#define __ieee754_fmod fmod
|
||
|
#define __ieee754_pow pow
|
||
|
#define __ieee754_lgamma lgamma
|
||
|
#define __ieee754_gamma gamma
|
||
|
#define __ieee754_lgamma_r lgamma_r
|
||
|
#define __ieee754_gamma_r gamma_r
|
||
|
#define __ieee754_log10 log10
|
||
|
#define __ieee754_sinh sinh
|
||
|
#define __ieee754_hypot hypot
|
||
|
#define __ieee754_j0 j0
|
||
|
#define __ieee754_j1 j1
|
||
|
#define __ieee754_y0 y0
|
||
|
#define __ieee754_y1 y1
|
||
|
#define __ieee754_jn jn
|
||
|
#define __ieee754_yn yn
|
||
|
#define __ieee754_remainder remainder
|
||
|
#define __ieee754_scalb scalb
|
||
|
#define __ieee754_sqrtf sqrtf
|
||
|
#define __ieee754_acosf acosf
|
||
|
#define __ieee754_acoshf acoshf
|
||
|
#define __ieee754_logf logf
|
||
|
#define __ieee754_atanhf atanhf
|
||
|
#define __ieee754_asinf asinf
|
||
|
#define __ieee754_atan2f atan2f
|
||
|
#define __ieee754_expf expf
|
||
|
#define __ieee754_coshf coshf
|
||
|
#define __ieee754_fmodf fmodf
|
||
|
#define __ieee754_powf powf
|
||
|
#define __ieee754_lgammaf lgammaf
|
||
|
#define __ieee754_gammaf gammaf
|
||
|
#define __ieee754_lgammaf_r lgammaf_r
|
||
|
#define __ieee754_gammaf_r gammaf_r
|
||
|
#define __ieee754_log10f log10f
|
||
|
#define __ieee754_log2f log2f
|
||
|
#define __ieee754_sinhf sinhf
|
||
|
#define __ieee754_hypotf hypotf
|
||
|
#define __ieee754_j0f j0f
|
||
|
#define __ieee754_j1f j1f
|
||
|
#define __ieee754_y0f y0f
|
||
|
#define __ieee754_y1f y1f
|
||
|
#define __ieee754_jnf jnf
|
||
|
#define __ieee754_ynf ynf
|
||
|
#define __ieee754_remainderf remainderf
|
||
|
#define __ieee754_scalbf scalbf
|
||
|
|
||
|
/* fdlibm kernel function */
|
||
|
int __kernel_rem_pio2(double*,double*,int,int,int);
|
||
|
|
||
|
/* double precision kernel functions */
|
||
|
#ifdef INLINE_REM_PIO2
|
||
|
__inline
|
||
|
#endif
|
||
|
int __ieee754_rem_pio2(double,double*);
|
||
|
double __kernel_sin(double,double,int);
|
||
|
double __kernel_cos(double,double);
|
||
|
double __kernel_tan(double,double,int);
|
||
|
|
||
|
/* float precision kernel functions */
|
||
|
#ifdef INLINE_REM_PIO2F
|
||
|
__inline
|
||
|
#endif
|
||
|
int __ieee754_rem_pio2f(float,double*);
|
||
|
#ifdef INLINE_KERNEL_SINDF
|
||
|
__inline
|
||
|
#endif
|
||
|
float __kernel_sindf(double);
|
||
|
#ifdef INLINE_KERNEL_COSDF
|
||
|
__inline
|
||
|
#endif
|
||
|
float __kernel_cosdf(double);
|
||
|
#ifdef INLINE_KERNEL_TANDF
|
||
|
__inline
|
||
|
#endif
|
||
|
float __kernel_tandf(double,int);
|
||
|
|
||
|
/* long double precision kernel functions */
|
||
|
long double __kernel_sinl(long double, long double, int);
|
||
|
long double __kernel_cosl(long double, long double);
|
||
|
long double __kernel_tanl(long double, long double, int);
|
||
|
|
||
|
#endif /* !_MATH_PRIVATE_H_ */
|