mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
Merge pull request #76 from NuxiNL/cmplx
Change existing code to use CMPLX*() instead of cpack*() where possible.
This commit is contained in:
commit
8b38bd1b0c
20 changed files with 143 additions and 127 deletions
|
@ -103,6 +103,6 @@ __ldexp_cexp(double complex z, int expt)
|
|||
half_expt = expt - half_expt;
|
||||
INSERT_WORDS(scale2, (0x3ff + half_expt) << 20, 0);
|
||||
|
||||
return (cpack(cos(y) * exp_x * scale1 * scale2,
|
||||
return (CMPLX(cos(y) * exp_x * scale1 * scale2,
|
||||
sin(y) * exp_x * scale1 * scale2));
|
||||
}
|
||||
|
|
|
@ -82,6 +82,6 @@ __ldexp_cexpf(float complex z, int expt)
|
|||
half_expt = expt - half_expt;
|
||||
SET_FLOAT_WORD(scale2, (0x7f + half_expt) << 23);
|
||||
|
||||
return (cpackf(cosf(y) * exp_x * scale1 * scale2,
|
||||
return (CMPLXF(cosf(y) * exp_x * scale1 * scale2,
|
||||
sinf(y) * exp_x * scale1 * scale2));
|
||||
}
|
||||
|
|
|
@ -204,7 +204,7 @@ typedef union {
|
|||
#define IMAGPART(z) ((z).a[1])
|
||||
|
||||
/*
|
||||
* Inline functions that can be used to construct complex values.
|
||||
* Macros that can be used to construct complex values.
|
||||
*
|
||||
* The C99 standard intends x+I*y to be used for this, but x+I*y is
|
||||
* currently unusable in general since gcc introduces many overflow,
|
||||
|
@ -217,18 +217,20 @@ typedef union {
|
|||
* and gcc 4.7 added a __builtin_complex feature to simplify implementation
|
||||
* of CMPLX in libc, so we can take advantage of these features if they
|
||||
* are available.
|
||||
*
|
||||
* If __builtin_complex is not available, resort to using inline
|
||||
* functions instead. These can unfortunately not be used to construct
|
||||
* compile-time constants.
|
||||
*/
|
||||
#if defined(CMPLXF) && defined(CMPLX) && defined(CMPLXL) /* C11 */
|
||||
# define cpackf(x,y) CMPLXF(x,y)
|
||||
# define cpack(x,y) CMPLX(x,y)
|
||||
# define cpackl(x,y) CMPLXL(x,y)
|
||||
#elif (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7)) && !defined(__INTEL_COMPILER)
|
||||
# define cpackf(x,y) __builtin_complex ((float) (x), (float) (y))
|
||||
# define cpack(x,y) __builtin_complex ((double) (x), (double) (y))
|
||||
# define cpackl(x,y) __builtin_complex ((long double) (x), (long double) (y))
|
||||
#else /* define our own cpack functions */
|
||||
|
||||
#define HAVE_BUILTIN_COMPLEX (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7)) && !defined(__INTEL_COMPILER)
|
||||
|
||||
#ifndef CMPLXF
|
||||
#if HAVE_BUILTIN_COMPLEX
|
||||
# define CMPLXF(x,y) __builtin_complex ((float) (x), (float) (y))
|
||||
#else
|
||||
static __inline float complex
|
||||
cpackf(float x, float y)
|
||||
CMPLXF(float x, float y)
|
||||
{
|
||||
float_complex z;
|
||||
|
||||
|
@ -236,9 +238,15 @@ cpackf(float x, float y)
|
|||
IMAGPART(z) = y;
|
||||
return (z.f);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef CMPLX
|
||||
#if HAVE_BUILTIN_COMPLEX
|
||||
# define CMPLX(x,y) __builtin_complex ((double) (x), (double) (y))
|
||||
#else
|
||||
static __inline double complex
|
||||
cpack(double x, double y)
|
||||
CMPLX(double x, double y)
|
||||
{
|
||||
double_complex z;
|
||||
|
||||
|
@ -246,9 +254,15 @@ cpack(double x, double y)
|
|||
IMAGPART(z) = y;
|
||||
return (z.f);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef CMPLXL
|
||||
#if HAVE_BUILTIN_COMPLEX
|
||||
# define CMPLXL(x,y) __builtin_complex ((long double) (x), (long double) (y))
|
||||
#else
|
||||
static __inline long double complex
|
||||
cpackl(long double x, long double y)
|
||||
CMPLXL(long double x, long double y)
|
||||
{
|
||||
long_double_complex z;
|
||||
|
||||
|
@ -256,7 +270,9 @@ cpackl(long double x, long double y)
|
|||
IMAGPART(z) = y;
|
||||
return (z.f);
|
||||
}
|
||||
#endif /* define our own cpack functions */
|
||||
#endif
|
||||
#endif
|
||||
|
||||
//VBS
|
||||
//#endif /* _COMPLEX_H */
|
||||
|
||||
|
|
|
@ -62,23 +62,23 @@ ccosh(double complex z)
|
|||
/* Handle the nearly-non-exceptional cases where x and y are finite. */
|
||||
if (ix < 0x7ff00000 && iy < 0x7ff00000) {
|
||||
if ((iy | ly) == 0)
|
||||
return (cpack(cosh(x), x * y));
|
||||
return (CMPLX(cosh(x), x * y));
|
||||
if (ix < 0x40360000) /* small x: normal case */
|
||||
return (cpack(cosh(x) * cos(y), sinh(x) * sin(y)));
|
||||
return (CMPLX(cosh(x) * cos(y), sinh(x) * sin(y)));
|
||||
|
||||
/* |x| >= 22, so cosh(x) ~= exp(|x|) */
|
||||
if (ix < 0x40862e42) {
|
||||
/* x < 710: exp(|x|) won't overflow */
|
||||
h = exp(fabs(x)) * 0.5;
|
||||
return (cpack(h * cos(y), copysign(h, x) * sin(y)));
|
||||
return (CMPLX(h * cos(y), copysign(h, x) * sin(y)));
|
||||
} else if (ix < 0x4096bbaa) {
|
||||
/* x < 1455: scale to avoid overflow */
|
||||
z = __ldexp_cexp(cpack(fabs(x), y), -1);
|
||||
return (cpack(creal(z), cimag(z) * copysign(1, x)));
|
||||
z = __ldexp_cexp(CMPLX(fabs(x), y), -1);
|
||||
return (CMPLX(creal(z), cimag(z) * copysign(1, x)));
|
||||
} else {
|
||||
/* x >= 1455: the result always overflows */
|
||||
h = huge * x;
|
||||
return (cpack(h * h * cos(y), h * sin(y)));
|
||||
return (CMPLX(h * h * cos(y), h * sin(y)));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -92,7 +92,7 @@ ccosh(double complex z)
|
|||
* the same as d(NaN).
|
||||
*/
|
||||
if ((ix | lx) == 0 && iy >= 0x7ff00000)
|
||||
return (cpack(y - y, copysign(0, x * (y - y))));
|
||||
return (CMPLX(y - y, copysign(0, x * (y - y))));
|
||||
|
||||
/*
|
||||
* cosh(+-Inf +- I 0) = +Inf + I (+-)(+-)0.
|
||||
|
@ -102,8 +102,8 @@ ccosh(double complex z)
|
|||
*/
|
||||
if ((iy | ly) == 0 && ix >= 0x7ff00000) {
|
||||
if (((hx & 0xfffff) | lx) == 0)
|
||||
return (cpack(x * x, copysign(0, x) * y));
|
||||
return (cpack(x * x, copysign(0, (x + x) * y)));
|
||||
return (CMPLX(x * x, copysign(0, x) * y));
|
||||
return (CMPLX(x * x, copysign(0, (x + x) * y)));
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -115,7 +115,7 @@ ccosh(double complex z)
|
|||
* nonzero x. Choice = don't raise (except for signaling NaNs).
|
||||
*/
|
||||
if (ix < 0x7ff00000 && iy >= 0x7ff00000)
|
||||
return (cpack(y - y, x * (y - y)));
|
||||
return (CMPLX(y - y, x * (y - y)));
|
||||
|
||||
/*
|
||||
* cosh(+-Inf + I NaN) = +Inf + I d(NaN).
|
||||
|
@ -128,8 +128,8 @@ ccosh(double complex z)
|
|||
*/
|
||||
if (ix >= 0x7ff00000 && ((hx & 0xfffff) | lx) == 0) {
|
||||
if (iy >= 0x7ff00000)
|
||||
return (cpack(x * x, x * (y - y)));
|
||||
return (cpack((x * x) * cos(y), x * sin(y)));
|
||||
return (CMPLX(x * x, x * (y - y)));
|
||||
return (CMPLX((x * x) * cos(y), x * sin(y)));
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -143,7 +143,7 @@ ccosh(double complex z)
|
|||
* Optionally raises the invalid floating-point exception for finite
|
||||
* nonzero y. Choice = don't raise (except for signaling NaNs).
|
||||
*/
|
||||
return (cpack((x * x) * (y - y), (x + x) * (y - y)));
|
||||
return (CMPLX((x * x) * (y - y), (x + x) * (y - y)));
|
||||
}
|
||||
|
||||
DLLEXPORT double complex
|
||||
|
@ -151,5 +151,5 @@ ccos(double complex z)
|
|||
{
|
||||
|
||||
/* ccos(z) = ccosh(I * z) */
|
||||
return (ccosh(cpack(-cimag(z), creal(z))));
|
||||
return (ccosh(CMPLX(-cimag(z), creal(z))));
|
||||
}
|
||||
|
|
|
@ -55,50 +55,50 @@ ccoshf(float complex z)
|
|||
|
||||
if (ix < 0x7f800000 && iy < 0x7f800000) {
|
||||
if (iy == 0)
|
||||
return (cpackf(coshf(x), x * y));
|
||||
return (CMPLXF(coshf(x), x * y));
|
||||
if (ix < 0x41100000) /* small x: normal case */
|
||||
return (cpackf(coshf(x) * cosf(y), sinhf(x) * sinf(y)));
|
||||
return (CMPLXF(coshf(x) * cosf(y), sinhf(x) * sinf(y)));
|
||||
|
||||
/* |x| >= 9, so cosh(x) ~= exp(|x|) */
|
||||
if (ix < 0x42b17218) {
|
||||
/* x < 88.7: expf(|x|) won't overflow */
|
||||
h = expf(fabsf(x)) * 0.5f;
|
||||
return (cpackf(h * cosf(y), copysignf(h, x) * sinf(y)));
|
||||
return (CMPLXF(h * cosf(y), copysignf(h, x) * sinf(y)));
|
||||
} else if (ix < 0x4340b1e7) {
|
||||
/* x < 192.7: scale to avoid overflow */
|
||||
z = __ldexp_cexpf(cpackf(fabsf(x), y), -1);
|
||||
return (cpackf(crealf(z), cimagf(z) * copysignf(1, x)));
|
||||
z = __ldexp_cexpf(CMPLXF(fabsf(x), y), -1);
|
||||
return (CMPLXF(crealf(z), cimagf(z) * copysignf(1, x)));
|
||||
} else {
|
||||
/* x >= 192.7: the result always overflows */
|
||||
h = huge * x;
|
||||
return (cpackf(h * h * cosf(y), h * sinf(y)));
|
||||
return (CMPLXF(h * h * cosf(y), h * sinf(y)));
|
||||
}
|
||||
}
|
||||
|
||||
if (ix == 0 && iy >= 0x7f800000)
|
||||
return (cpackf(y - y, copysignf(0, x * (y - y))));
|
||||
return (CMPLXF(y - y, copysignf(0, x * (y - y))));
|
||||
|
||||
if (iy == 0 && ix >= 0x7f800000) {
|
||||
if ((hx & 0x7fffff) == 0)
|
||||
return (cpackf(x * x, copysignf(0, x) * y));
|
||||
return (cpackf(x * x, copysignf(0, (x + x) * y)));
|
||||
return (CMPLXF(x * x, copysignf(0, x) * y));
|
||||
return (CMPLXF(x * x, copysignf(0, (x + x) * y)));
|
||||
}
|
||||
|
||||
if (ix < 0x7f800000 && iy >= 0x7f800000)
|
||||
return (cpackf(y - y, x * (y - y)));
|
||||
return (CMPLXF(y - y, x * (y - y)));
|
||||
|
||||
if (ix >= 0x7f800000 && (hx & 0x7fffff) == 0) {
|
||||
if (iy >= 0x7f800000)
|
||||
return (cpackf(x * x, x * (y - y)));
|
||||
return (cpackf((x * x) * cosf(y), x * sinf(y)));
|
||||
return (CMPLXF(x * x, x * (y - y)));
|
||||
return (CMPLXF((x * x) * cosf(y), x * sinf(y)));
|
||||
}
|
||||
|
||||
return (cpackf((x * x) * (y - y), (x + x) * (y - y)));
|
||||
return (CMPLXF((x * x) * (y - y), (x + x) * (y - y)));
|
||||
}
|
||||
|
||||
DLLEXPORT float complex
|
||||
ccosf(float complex z)
|
||||
{
|
||||
|
||||
return (ccoshf(cpackf(-cimagf(z), crealf(z))));
|
||||
return (ccoshf(CMPLXF(-cimagf(z), crealf(z))));
|
||||
}
|
||||
|
|
12
src/s_cexp.c
12
src/s_cexp.c
|
@ -50,22 +50,22 @@ cexp(double complex z)
|
|||
|
||||
/* cexp(x + I 0) = exp(x) + I 0 */
|
||||
if ((hy | ly) == 0)
|
||||
return (cpack(exp(x), y));
|
||||
return (CMPLX(exp(x), y));
|
||||
EXTRACT_WORDS(hx, lx, x);
|
||||
/* cexp(0 + I y) = cos(y) + I sin(y) */
|
||||
if (((hx & 0x7fffffff) | lx) == 0)
|
||||
return (cpack(cos(y), sin(y)));
|
||||
return (CMPLX(cos(y), sin(y)));
|
||||
|
||||
if (hy >= 0x7ff00000) {
|
||||
if (lx != 0 || (hx & 0x7fffffff) != 0x7ff00000) {
|
||||
/* cexp(finite|NaN +- I Inf|NaN) = NaN + I NaN */
|
||||
return (cpack(y - y, y - y));
|
||||
return (CMPLX(y - y, y - y));
|
||||
} else if (hx & 0x80000000) {
|
||||
/* cexp(-Inf +- I Inf|NaN) = 0 + I 0 */
|
||||
return (cpack(0.0, 0.0));
|
||||
return (CMPLX(0.0, 0.0));
|
||||
} else {
|
||||
/* cexp(+Inf +- I Inf|NaN) = Inf + I NaN */
|
||||
return (cpack(x, y - y));
|
||||
return (CMPLX(x, y - y));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -84,6 +84,6 @@ cexp(double complex z)
|
|||
* - x = NaN (spurious inexact exception from y)
|
||||
*/
|
||||
exp_x = exp(x);
|
||||
return (cpack(exp_x * cos(y), exp_x * sin(y)));
|
||||
return (CMPLX(exp_x * cos(y), exp_x * sin(y)));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -50,22 +50,22 @@ cexpf(float complex z)
|
|||
|
||||
/* cexp(x + I 0) = exp(x) + I 0 */
|
||||
if (hy == 0)
|
||||
return (cpackf(expf(x), y));
|
||||
return (CMPLXF(expf(x), y));
|
||||
GET_FLOAT_WORD(hx, x);
|
||||
/* cexp(0 + I y) = cos(y) + I sin(y) */
|
||||
if ((hx & 0x7fffffff) == 0)
|
||||
return (cpackf(cosf(y), sinf(y)));
|
||||
return (CMPLXF(cosf(y), sinf(y)));
|
||||
|
||||
if (hy >= 0x7f800000) {
|
||||
if ((hx & 0x7fffffff) != 0x7f800000) {
|
||||
/* cexp(finite|NaN +- I Inf|NaN) = NaN + I NaN */
|
||||
return (cpackf(y - y, y - y));
|
||||
return (CMPLXF(y - y, y - y));
|
||||
} else if (hx & 0x80000000) {
|
||||
/* cexp(-Inf +- I Inf|NaN) = 0 + I 0 */
|
||||
return (cpackf(0.0, 0.0));
|
||||
return (CMPLXF(0.0, 0.0));
|
||||
} else {
|
||||
/* cexp(+Inf +- I Inf|NaN) = Inf + I NaN */
|
||||
return (cpackf(x, y - y));
|
||||
return (CMPLXF(x, y - y));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -84,6 +84,6 @@ cexpf(float complex z)
|
|||
* - x = NaN (spurious inexact exception from y)
|
||||
*/
|
||||
exp_x = expf(x);
|
||||
return (cpackf(exp_x * cosf(y), exp_x * sinf(y)));
|
||||
return (CMPLXF(exp_x * cosf(y), exp_x * sinf(y)));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -35,5 +35,5 @@ DLLEXPORT double complex
|
|||
conj(double complex z)
|
||||
{
|
||||
|
||||
return (cpack(creal(z), -cimag(z)));
|
||||
return (CMPLX(creal(z), -cimag(z)));
|
||||
}
|
||||
|
|
|
@ -35,5 +35,5 @@ DLLEXPORT float complex
|
|||
conjf(float complex z)
|
||||
{
|
||||
|
||||
return (cpackf(crealf(z), -cimagf(z)));
|
||||
return (CMPLXF(crealf(z), -cimagf(z)));
|
||||
}
|
||||
|
|
|
@ -35,5 +35,5 @@ DLLEXPORT long double complex
|
|||
conjl(long double complex z)
|
||||
{
|
||||
|
||||
return (cpackl(creall(z), -cimagl(z)));
|
||||
return (CMPLXL(creall(z), -cimagl(z)));
|
||||
}
|
||||
|
|
|
@ -39,7 +39,7 @@ cproj(double complex z)
|
|||
if (!isinf(creal(z)) && !isinf(cimag(z)))
|
||||
return (z);
|
||||
else
|
||||
return (cpack(INFINITY, copysign(0.0, cimag(z))));
|
||||
return (CMPLX(INFINITY, copysign(0.0, cimag(z))));
|
||||
}
|
||||
|
||||
#if LDBL_MANT_DIG == 53
|
||||
|
|
|
@ -39,5 +39,5 @@ cprojf(float complex z)
|
|||
if (!isinf(crealf(z)) && !isinf(cimagf(z)))
|
||||
return (z);
|
||||
else
|
||||
return (cpackf(INFINITY, copysignf(0.0, cimagf(z))));
|
||||
return (CMPLXF(INFINITY, copysignf(0.0, cimagf(z))));
|
||||
}
|
||||
|
|
|
@ -39,5 +39,5 @@ cprojl(long double complex z)
|
|||
if (!isinf(creall(z)) && !isinf(cimagl(z)))
|
||||
return (z);
|
||||
else
|
||||
return (cpackl(INFINITY, copysignl(0.0, cimagl(z))));
|
||||
return (CMPLXL(INFINITY, copysignl(0.0, cimagl(z))));
|
||||
}
|
||||
|
|
|
@ -62,23 +62,23 @@ csinh(double complex z)
|
|||
/* Handle the nearly-non-exceptional cases where x and y are finite. */
|
||||
if (ix < 0x7ff00000 && iy < 0x7ff00000) {
|
||||
if ((iy | ly) == 0)
|
||||
return (cpack(sinh(x), y));
|
||||
return (CMPLX(sinh(x), y));
|
||||
if (ix < 0x40360000) /* small x: normal case */
|
||||
return (cpack(sinh(x) * cos(y), cosh(x) * sin(y)));
|
||||
return (CMPLX(sinh(x) * cos(y), cosh(x) * sin(y)));
|
||||
|
||||
/* |x| >= 22, so cosh(x) ~= exp(|x|) */
|
||||
if (ix < 0x40862e42) {
|
||||
/* x < 710: exp(|x|) won't overflow */
|
||||
h = exp(fabs(x)) * 0.5;
|
||||
return (cpack(copysign(h, x) * cos(y), h * sin(y)));
|
||||
return (CMPLX(copysign(h, x) * cos(y), h * sin(y)));
|
||||
} else if (ix < 0x4096bbaa) {
|
||||
/* x < 1455: scale to avoid overflow */
|
||||
z = __ldexp_cexp(cpack(fabs(x), y), -1);
|
||||
return (cpack(creal(z) * copysign(1, x), cimag(z)));
|
||||
z = __ldexp_cexp(CMPLX(fabs(x), y), -1);
|
||||
return (CMPLX(creal(z) * copysign(1, x), cimag(z)));
|
||||
} else {
|
||||
/* x >= 1455: the result always overflows */
|
||||
h = huge * x;
|
||||
return (cpack(h * cos(y), h * h * sin(y)));
|
||||
return (CMPLX(h * cos(y), h * h * sin(y)));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -92,7 +92,7 @@ csinh(double complex z)
|
|||
* the same as d(NaN).
|
||||
*/
|
||||
if ((ix | lx) == 0 && iy >= 0x7ff00000)
|
||||
return (cpack(copysign(0, x * (y - y)), y - y));
|
||||
return (CMPLX(copysign(0, x * (y - y)), y - y));
|
||||
|
||||
/*
|
||||
* sinh(+-Inf +- I 0) = +-Inf + I +-0.
|
||||
|
@ -101,8 +101,8 @@ csinh(double complex z)
|
|||
*/
|
||||
if ((iy | ly) == 0 && ix >= 0x7ff00000) {
|
||||
if (((hx & 0xfffff) | lx) == 0)
|
||||
return (cpack(x, y));
|
||||
return (cpack(x, copysign(0, y)));
|
||||
return (CMPLX(x, y));
|
||||
return (CMPLX(x, copysign(0, y)));
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -114,7 +114,7 @@ csinh(double complex z)
|
|||
* nonzero x. Choice = don't raise (except for signaling NaNs).
|
||||
*/
|
||||
if (ix < 0x7ff00000 && iy >= 0x7ff00000)
|
||||
return (cpack(y - y, x * (y - y)));
|
||||
return (CMPLX(y - y, x * (y - y)));
|
||||
|
||||
/*
|
||||
* sinh(+-Inf + I NaN) = +-Inf + I d(NaN).
|
||||
|
@ -129,8 +129,8 @@ csinh(double complex z)
|
|||
*/
|
||||
if (ix >= 0x7ff00000 && ((hx & 0xfffff) | lx) == 0) {
|
||||
if (iy >= 0x7ff00000)
|
||||
return (cpack(x * x, x * (y - y)));
|
||||
return (cpack(x * cos(y), INFINITY * sin(y)));
|
||||
return (CMPLX(x * x, x * (y - y)));
|
||||
return (CMPLX(x * cos(y), INFINITY * sin(y)));
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -144,7 +144,7 @@ csinh(double complex z)
|
|||
* Optionally raises the invalid floating-point exception for finite
|
||||
* nonzero y. Choice = don't raise (except for signaling NaNs).
|
||||
*/
|
||||
return (cpack((x * x) * (y - y), (x + x) * (y - y)));
|
||||
return (CMPLX((x * x) * (y - y), (x + x) * (y - y)));
|
||||
}
|
||||
|
||||
DLLEXPORT double complex
|
||||
|
@ -152,6 +152,6 @@ csin(double complex z)
|
|||
{
|
||||
|
||||
/* csin(z) = -I * csinh(I * z) */
|
||||
z = csinh(cpack(-cimag(z), creal(z)));
|
||||
return (cpack(cimag(z), -creal(z)));
|
||||
z = csinh(CMPLX(-cimag(z), creal(z)));
|
||||
return (CMPLX(cimag(z), -creal(z)));
|
||||
}
|
||||
|
|
|
@ -55,51 +55,51 @@ csinhf(float complex z)
|
|||
|
||||
if (ix < 0x7f800000 && iy < 0x7f800000) {
|
||||
if (iy == 0)
|
||||
return (cpackf(sinhf(x), y));
|
||||
return (CMPLXF(sinhf(x), y));
|
||||
if (ix < 0x41100000) /* small x: normal case */
|
||||
return (cpackf(sinhf(x) * cosf(y), coshf(x) * sinf(y)));
|
||||
return (CMPLXF(sinhf(x) * cosf(y), coshf(x) * sinf(y)));
|
||||
|
||||
/* |x| >= 9, so cosh(x) ~= exp(|x|) */
|
||||
if (ix < 0x42b17218) {
|
||||
/* x < 88.7: expf(|x|) won't overflow */
|
||||
h = expf(fabsf(x)) * 0.5f;
|
||||
return (cpackf(copysignf(h, x) * cosf(y), h * sinf(y)));
|
||||
return (CMPLXF(copysignf(h, x) * cosf(y), h * sinf(y)));
|
||||
} else if (ix < 0x4340b1e7) {
|
||||
/* x < 192.7: scale to avoid overflow */
|
||||
z = __ldexp_cexpf(cpackf(fabsf(x), y), -1);
|
||||
return (cpackf(crealf(z) * copysignf(1, x), cimagf(z)));
|
||||
z = __ldexp_cexpf(CMPLXF(fabsf(x), y), -1);
|
||||
return (CMPLXF(crealf(z) * copysignf(1, x), cimagf(z)));
|
||||
} else {
|
||||
/* x >= 192.7: the result always overflows */
|
||||
h = huge * x;
|
||||
return (cpackf(h * cosf(y), h * h * sinf(y)));
|
||||
return (CMPLXF(h * cosf(y), h * h * sinf(y)));
|
||||
}
|
||||
}
|
||||
|
||||
if (ix == 0 && iy >= 0x7f800000)
|
||||
return (cpackf(copysignf(0, x * (y - y)), y - y));
|
||||
return (CMPLXF(copysignf(0, x * (y - y)), y - y));
|
||||
|
||||
if (iy == 0 && ix >= 0x7f800000) {
|
||||
if ((hx & 0x7fffff) == 0)
|
||||
return (cpackf(x, y));
|
||||
return (cpackf(x, copysignf(0, y)));
|
||||
return (CMPLXF(x, y));
|
||||
return (CMPLXF(x, copysignf(0, y)));
|
||||
}
|
||||
|
||||
if (ix < 0x7f800000 && iy >= 0x7f800000)
|
||||
return (cpackf(y - y, x * (y - y)));
|
||||
return (CMPLXF(y - y, x * (y - y)));
|
||||
|
||||
if (ix >= 0x7f800000 && (hx & 0x7fffff) == 0) {
|
||||
if (iy >= 0x7f800000)
|
||||
return (cpackf(x * x, x * (y - y)));
|
||||
return (cpackf(x * cosf(y), INFINITY * sinf(y)));
|
||||
return (CMPLXF(x * x, x * (y - y)));
|
||||
return (CMPLXF(x * cosf(y), INFINITY * sinf(y)));
|
||||
}
|
||||
|
||||
return (cpackf((x * x) * (y - y), (x + x) * (y - y)));
|
||||
return (CMPLXF((x * x) * (y - y), (x + x) * (y - y)));
|
||||
}
|
||||
|
||||
DLLEXPORT float complex
|
||||
csinf(float complex z)
|
||||
{
|
||||
|
||||
z = csinhf(cpackf(-cimagf(z), crealf(z)));
|
||||
return (cpackf(cimagf(z), -crealf(z)));
|
||||
z = csinhf(CMPLXF(-cimagf(z), crealf(z)));
|
||||
return (CMPLXF(cimagf(z), -crealf(z)));
|
||||
}
|
||||
|
|
|
@ -60,12 +60,12 @@ csqrt(double complex z)
|
|||
|
||||
/* Handle special cases. */
|
||||
if (z == 0)
|
||||
return (cpack(0, b));
|
||||
return (CMPLX(0, b));
|
||||
if (isinf(b))
|
||||
return (cpack(INFINITY, b));
|
||||
return (CMPLX(INFINITY, b));
|
||||
if (isnan(a)) {
|
||||
t = (b - b) / (b - b); /* raise invalid if b is not a NaN */
|
||||
return (cpack(a, t)); /* return NaN + NaN i */
|
||||
return (CMPLX(a, t)); /* return NaN + NaN i */
|
||||
}
|
||||
if (isinf(a)) {
|
||||
/*
|
||||
|
@ -75,9 +75,9 @@ csqrt(double complex z)
|
|||
* csqrt(-inf + y i) = 0 + inf i
|
||||
*/
|
||||
if (signbit(a))
|
||||
return (cpack(fabs(b - b), copysign(a, b)));
|
||||
return (CMPLX(fabs(b - b), copysign(a, b)));
|
||||
else
|
||||
return (cpack(a, copysign(b - b, b)));
|
||||
return (CMPLX(a, copysign(b - b, b)));
|
||||
}
|
||||
/*
|
||||
* The remaining special case (b is NaN) is handled just fine by
|
||||
|
@ -96,10 +96,10 @@ csqrt(double complex z)
|
|||
/* Algorithm 312, CACM vol 10, Oct 1967. */
|
||||
if (a >= 0) {
|
||||
t = sqrt((a + hypot(a, b)) * 0.5);
|
||||
result = cpack(t, b / (2 * t));
|
||||
result = CMPLX(t, b / (2 * t));
|
||||
} else {
|
||||
t = sqrt((-a + hypot(a, b)) * 0.5);
|
||||
result = cpack(fabs(b) / (2 * t), copysign(t, b));
|
||||
result = CMPLX(fabs(b) / (2 * t), copysign(t, b));
|
||||
}
|
||||
|
||||
/* Rescale. */
|
||||
|
|
|
@ -51,12 +51,12 @@ csqrtf(float complex z)
|
|||
|
||||
/* Handle special cases. */
|
||||
if (z == 0)
|
||||
return (cpackf(0, b));
|
||||
return (CMPLXF(0, b));
|
||||
if (isinf(b))
|
||||
return (cpackf(INFINITY, b));
|
||||
return (CMPLXF(INFINITY, b));
|
||||
if (isnan(a)) {
|
||||
t = (b - b) / (b - b); /* raise invalid if b is not a NaN */
|
||||
return (cpackf(a, t)); /* return NaN + NaN i */
|
||||
return (CMPLXF(a, t)); /* return NaN + NaN i */
|
||||
}
|
||||
if (isinf(a)) {
|
||||
/*
|
||||
|
@ -66,9 +66,9 @@ csqrtf(float complex z)
|
|||
* csqrtf(-inf + y i) = 0 + inf i
|
||||
*/
|
||||
if (signbit(a))
|
||||
return (cpackf(fabsf(b - b), copysignf(a, b)));
|
||||
return (CMPLXF(fabsf(b - b), copysignf(a, b)));
|
||||
else
|
||||
return (cpackf(a, copysignf(b - b, b)));
|
||||
return (CMPLXF(a, copysignf(b - b, b)));
|
||||
}
|
||||
/*
|
||||
* The remaining special case (b is NaN) is handled just fine by
|
||||
|
@ -82,9 +82,9 @@ csqrtf(float complex z)
|
|||
*/
|
||||
if (a >= 0) {
|
||||
t = sqrt((a + hypot(a, b)) * 0.5);
|
||||
return (cpackf(t, b / (2.0 * t)));
|
||||
return (CMPLXF(t, b / (2.0 * t)));
|
||||
} else {
|
||||
t = sqrt((-a + hypot(a, b)) * 0.5);
|
||||
return (cpackf(fabsf(b) / (2.0 * t), copysignf(t, b)));
|
||||
return (CMPLXF(fabsf(b) / (2.0 * t), copysignf(t, b)));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -59,12 +59,12 @@ csqrtl(long double complex z)
|
|||
|
||||
/* Handle special cases. */
|
||||
if (z == 0)
|
||||
return (cpackl(0, b));
|
||||
return (CMPLXL(0, b));
|
||||
if (isinf(b))
|
||||
return (cpackl(INFINITY, b));
|
||||
return (CMPLXL(INFINITY, b));
|
||||
if (isnan(a)) {
|
||||
t = (b - b) / (b - b); /* raise invalid if b is not a NaN */
|
||||
return (cpackl(a, t)); /* return NaN + NaN i */
|
||||
return (CMPLXL(a, t)); /* return NaN + NaN i */
|
||||
}
|
||||
if (isinf(a)) {
|
||||
/*
|
||||
|
@ -74,9 +74,9 @@ csqrtl(long double complex z)
|
|||
* csqrt(-inf + y i) = 0 + inf i
|
||||
*/
|
||||
if (signbit(a))
|
||||
return (cpackl(fabsl(b - b), copysignl(a, b)));
|
||||
return (CMPLXL(fabsl(b - b), copysignl(a, b)));
|
||||
else
|
||||
return (cpackl(a, copysignl(b - b, b)));
|
||||
return (CMPLXL(a, copysignl(b - b, b)));
|
||||
}
|
||||
/*
|
||||
* The remaining special case (b is NaN) is handled just fine by
|
||||
|
@ -95,10 +95,10 @@ csqrtl(long double complex z)
|
|||
/* Algorithm 312, CACM vol 10, Oct 1967. */
|
||||
if (a >= 0) {
|
||||
t = sqrtl((a + hypotl(a, b)) * 0.5);
|
||||
result = cpackl(t, b / (2 * t));
|
||||
result = CMPLXL(t, b / (2 * t));
|
||||
} else {
|
||||
t = sqrtl((-a + hypotl(a, b)) * 0.5);
|
||||
result = cpackl(fabsl(b) / (2 * t), copysignl(t, b));
|
||||
result = CMPLXL(fabsl(b) / (2 * t), copysignl(t, b));
|
||||
}
|
||||
|
||||
/* Rescale. */
|
||||
|
|
|
@ -102,9 +102,9 @@ ctanh(double complex z)
|
|||
*/
|
||||
if (ix >= 0x7ff00000) {
|
||||
if ((ix & 0xfffff) | lx) /* x is NaN */
|
||||
return (cpack(x, (y == 0 ? y : x * y)));
|
||||
return (CMPLX(x, (y == 0 ? y : x * y)));
|
||||
SET_HIGH_WORD(x, hx - 0x40000000); /* x = copysign(1, x) */
|
||||
return (cpack(x, copysign(0, isinf(y) ? y : sin(y) * cos(y))));
|
||||
return (CMPLX(x, copysign(0, isinf(y) ? y : sin(y) * cos(y))));
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -112,7 +112,7 @@ ctanh(double complex z)
|
|||
* ctanh(x +- i Inf) = NaN + i NaN
|
||||
*/
|
||||
if (!isfinite(y))
|
||||
return (cpack(y - y, y - y));
|
||||
return (CMPLX(y - y, y - y));
|
||||
|
||||
/*
|
||||
* ctanh(+-huge + i +-y) ~= +-1 +- i 2sin(2y)/exp(2x), using the
|
||||
|
@ -121,7 +121,7 @@ ctanh(double complex z)
|
|||
*/
|
||||
if (ix >= 0x40360000) { /* x >= 22 */
|
||||
double exp_mx = exp(-fabs(x));
|
||||
return (cpack(copysign(1, x),
|
||||
return (CMPLX(copysign(1, x),
|
||||
4 * sin(y) * cos(y) * exp_mx * exp_mx));
|
||||
}
|
||||
|
||||
|
@ -131,7 +131,7 @@ ctanh(double complex z)
|
|||
s = sinh(x);
|
||||
rho = sqrt(1 + s * s); /* = cosh(x) */
|
||||
denom = 1 + beta * s * s;
|
||||
return (cpack((beta * rho * s) / denom, t / denom));
|
||||
return (CMPLX((beta * rho * s) / denom, t / denom));
|
||||
}
|
||||
|
||||
DLLEXPORT double complex
|
||||
|
@ -139,6 +139,6 @@ ctan(double complex z)
|
|||
{
|
||||
|
||||
/* ctan(z) = -I * ctanh(I * z) */
|
||||
z = ctanh(cpack(-cimag(z), creal(z)));
|
||||
return (cpack(cimag(z), -creal(z)));
|
||||
z = ctanh(CMPLX(-cimag(z), creal(z)));
|
||||
return (CMPLX(cimag(z), -creal(z)));
|
||||
}
|
||||
|
|
|
@ -51,18 +51,18 @@ ctanhf(float complex z)
|
|||
|
||||
if (ix >= 0x7f800000) {
|
||||
if (ix & 0x7fffff)
|
||||
return (cpackf(x, (y == 0 ? y : x * y)));
|
||||
return (CMPLXF(x, (y == 0 ? y : x * y)));
|
||||
SET_FLOAT_WORD(x, hx - 0x40000000);
|
||||
return (cpackf(x,
|
||||
return (CMPLXF(x,
|
||||
copysignf(0, isinf(y) ? y : sinf(y) * cosf(y))));
|
||||
}
|
||||
|
||||
if (!isfinite(y))
|
||||
return (cpackf(y - y, y - y));
|
||||
return (CMPLXF(y - y, y - y));
|
||||
|
||||
if (ix >= 0x41300000) { /* x >= 11 */
|
||||
float exp_mx = expf(-fabsf(x));
|
||||
return (cpackf(copysignf(1, x),
|
||||
return (CMPLXF(copysignf(1, x),
|
||||
4 * sinf(y) * cosf(y) * exp_mx * exp_mx));
|
||||
}
|
||||
|
||||
|
@ -71,14 +71,14 @@ ctanhf(float complex z)
|
|||
s = sinhf(x);
|
||||
rho = sqrtf(1 + s * s);
|
||||
denom = 1 + beta * s * s;
|
||||
return (cpackf((beta * rho * s) / denom, t / denom));
|
||||
return (CMPLXF((beta * rho * s) / denom, t / denom));
|
||||
}
|
||||
|
||||
DLLEXPORT float complex
|
||||
ctanf(float complex z)
|
||||
{
|
||||
|
||||
z = ctanhf(cpackf(-cimagf(z), crealf(z)));
|
||||
return (cpackf(cimagf(z), -crealf(z)));
|
||||
z = ctanhf(CMPLXF(-cimagf(z), crealf(z)));
|
||||
return (CMPLXF(cimagf(z), -crealf(z)));
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue