mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2024-12-28 04:23:41 +01:00
Remove [jy][01n]f(). X/Open only standardizes the double versions.
This commit is contained in:
parent
ce4982acf8
commit
8c8693cf79
7 changed files with 8 additions and 901 deletions
|
@ -384,14 +384,6 @@ float fminf(float, float) __pure2;
|
|||
* float versions of BSD math library entry points
|
||||
*/
|
||||
#if __BSD_VISIBLE
|
||||
float dremf(float, float);
|
||||
float j0f(float);
|
||||
float j1f(float);
|
||||
float jnf(int, float);
|
||||
float y0f(float);
|
||||
float y1f(float);
|
||||
float ynf(int, float);
|
||||
|
||||
/*
|
||||
* Float versions of reentrant version of lgamma; passes signgam back by
|
||||
* reference as the second argument; user must allocate space for signgam.
|
||||
|
|
|
@ -1,9 +1,8 @@
|
|||
$(CUR_SRCS) = common.c \
|
||||
e_acos.c e_acosf.c e_acosh.c e_acoshf.c e_asin.c e_asinf.c \
|
||||
e_atan2.c e_atan2f.c e_atanh.c e_atanhf.c e_cosh.c e_coshf.c e_exp.c \
|
||||
e_expf.c e_fmod.c e_fmodf.c \
|
||||
e_hypot.c e_hypotf.c e_j0.c e_j0f.c e_j1.c e_j1f.c \
|
||||
e_jn.c e_jnf.c e_lgamma.c e_lgamma_r.c e_lgammaf.c e_lgammaf_r.c \
|
||||
e_expf.c e_fmod.c e_fmodf.c e_hypot.c e_hypotf.c e_j0.c e_j1.c \
|
||||
e_jn.c e_lgamma.c e_lgamma_r.c e_lgammaf.c e_lgammaf_r.c \
|
||||
e_lgammal.c e_log.c e_log10.c e_log10f.c e_log2.c e_log2f.c e_logf.c \
|
||||
e_pow.c e_powf.c e_remainder.c e_remainderf.c \
|
||||
e_rem_pio2.c e_rem_pio2f.c \
|
||||
|
|
344
src/e_j0f.c
344
src/e_j0f.c
|
@ -1,344 +0,0 @@
|
|||
/* e_j0f.c -- float version of e_j0.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include "cdefs-compat.h"
|
||||
//__FBSDID("$FreeBSD: src/lib/msun/src/e_j0f.c,v 1.8 2008/02/22 02:30:35 das Exp $");
|
||||
|
||||
#include <openlibm_math.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static float pzerof(float), qzerof(float);
|
||||
|
||||
static const float
|
||||
huge = 1e30,
|
||||
one = 1.0,
|
||||
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
|
||||
tpi = 6.3661974669e-01, /* 0x3f22f983 */
|
||||
/* R0/S0 on [0, 2.00] */
|
||||
R02 = 1.5625000000e-02, /* 0x3c800000 */
|
||||
R03 = -1.8997929874e-04, /* 0xb947352e */
|
||||
R04 = 1.8295404516e-06, /* 0x35f58e88 */
|
||||
R05 = -4.6183270541e-09, /* 0xb19eaf3c */
|
||||
S01 = 1.5619102865e-02, /* 0x3c7fe744 */
|
||||
S02 = 1.1692678527e-04, /* 0x38f53697 */
|
||||
S03 = 5.1354652442e-07, /* 0x3509daa6 */
|
||||
S04 = 1.1661400734e-09; /* 0x30a045e8 */
|
||||
|
||||
static const float zero = 0.0;
|
||||
|
||||
DLLEXPORT float
|
||||
__ieee754_j0f(float x)
|
||||
{
|
||||
float z, s,c,ss,cc,r,u,v;
|
||||
int32_t hx,ix;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7f800000) return one/(x*x);
|
||||
x = fabsf(x);
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
s = sinf(x);
|
||||
c = cosf(x);
|
||||
ss = s-c;
|
||||
cc = s+c;
|
||||
if(ix<0x7f000000) { /* make sure x+x not overflow */
|
||||
z = -cosf(x+x);
|
||||
if ((s*c)<zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
/*
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(x);
|
||||
else {
|
||||
u = pzerof(x); v = qzerof(x);
|
||||
z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if(ix<0x39000000) { /* |x| < 2**-13 */
|
||||
if(huge+x>one) { /* raise inexact if x != 0 */
|
||||
if(ix<0x32000000) return one; /* |x|<2**-27 */
|
||||
else return one - (float)0.25*x*x;
|
||||
}
|
||||
}
|
||||
z = x*x;
|
||||
r = z*(R02+z*(R03+z*(R04+z*R05)));
|
||||
s = one+z*(S01+z*(S02+z*(S03+z*S04)));
|
||||
if(ix < 0x3F800000) { /* |x| < 1.00 */
|
||||
return one + z*((float)-0.25+(r/s));
|
||||
} else {
|
||||
u = (float)0.5*x;
|
||||
return((one+u)*(one-u)+z*(r/s));
|
||||
}
|
||||
}
|
||||
|
||||
static const float
|
||||
u00 = -7.3804296553e-02, /* 0xbd9726b5 */
|
||||
u01 = 1.7666645348e-01, /* 0x3e34e80d */
|
||||
u02 = -1.3818567619e-02, /* 0xbc626746 */
|
||||
u03 = 3.4745343146e-04, /* 0x39b62a69 */
|
||||
u04 = -3.8140706238e-06, /* 0xb67ff53c */
|
||||
u05 = 1.9559013964e-08, /* 0x32a802ba */
|
||||
u06 = -3.9820518410e-11, /* 0xae2f21eb */
|
||||
v01 = 1.2730483897e-02, /* 0x3c509385 */
|
||||
v02 = 7.6006865129e-05, /* 0x389f65e0 */
|
||||
v03 = 2.5915085189e-07, /* 0x348b216c */
|
||||
v04 = 4.4111031494e-10; /* 0x2ff280c2 */
|
||||
|
||||
DLLEXPORT float
|
||||
__ieee754_y0f(float x)
|
||||
{
|
||||
float z, s,c,ss,cc,u,v;
|
||||
int32_t hx,ix;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
|
||||
if(ix>=0x7f800000) return one/(x+x*x);
|
||||
if(ix==0) return -one/zero;
|
||||
if(hx<0) return zero/zero;
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
|
||||
* where x0 = x-pi/4
|
||||
* Better formula:
|
||||
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) + cos(x))
|
||||
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.
|
||||
*/
|
||||
s = sinf(x);
|
||||
c = cosf(x);
|
||||
ss = s-c;
|
||||
cc = s+c;
|
||||
/*
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix<0x7f000000) { /* make sure x+x not overflow */
|
||||
z = -cosf(x+x);
|
||||
if ((s*c)<zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
if(ix>0x80000000) z = (invsqrtpi*ss)/sqrtf(x);
|
||||
else {
|
||||
u = pzerof(x); v = qzerof(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if(ix<=0x32000000) { /* x < 2**-27 */
|
||||
return(u00 + tpi*__ieee754_logf(x));
|
||||
}
|
||||
z = x*x;
|
||||
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
|
||||
v = one+z*(v01+z*(v02+z*(v03+z*v04)));
|
||||
return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
|
||||
}
|
||||
|
||||
/* The asymptotic expansions of pzero is
|
||||
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
|
||||
* For x >= 2, We approximate pzero by
|
||||
* pzero(x) = 1 + (R/S)
|
||||
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
|
||||
* S = 1 + pS0*s^2 + ... + pS4*s^10
|
||||
* and
|
||||
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
|
||||
*/
|
||||
static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.0000000000e+00, /* 0x00000000 */
|
||||
-7.0312500000e-02, /* 0xbd900000 */
|
||||
-8.0816707611e+00, /* 0xc1014e86 */
|
||||
-2.5706311035e+02, /* 0xc3808814 */
|
||||
-2.4852163086e+03, /* 0xc51b5376 */
|
||||
-5.2530439453e+03, /* 0xc5a4285a */
|
||||
};
|
||||
static const float pS8[5] = {
|
||||
1.1653436279e+02, /* 0x42e91198 */
|
||||
3.8337448730e+03, /* 0x456f9beb */
|
||||
4.0597855469e+04, /* 0x471e95db */
|
||||
1.1675296875e+05, /* 0x47e4087c */
|
||||
4.7627726562e+04, /* 0x473a0bba */
|
||||
};
|
||||
static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
-1.1412546255e-11, /* 0xad48c58a */
|
||||
-7.0312492549e-02, /* 0xbd8fffff */
|
||||
-4.1596107483e+00, /* 0xc0851b88 */
|
||||
-6.7674766541e+01, /* 0xc287597b */
|
||||
-3.3123129272e+02, /* 0xc3a59d9b */
|
||||
-3.4643338013e+02, /* 0xc3ad3779 */
|
||||
};
|
||||
static const float pS5[5] = {
|
||||
6.0753936768e+01, /* 0x42730408 */
|
||||
1.0512523193e+03, /* 0x44836813 */
|
||||
5.9789707031e+03, /* 0x45bad7c4 */
|
||||
9.6254453125e+03, /* 0x461665c8 */
|
||||
2.4060581055e+03, /* 0x451660ee */
|
||||
};
|
||||
|
||||
static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
-2.5470459075e-09, /* 0xb12f081b */
|
||||
-7.0311963558e-02, /* 0xbd8fffb8 */
|
||||
-2.4090321064e+00, /* 0xc01a2d95 */
|
||||
-2.1965976715e+01, /* 0xc1afba52 */
|
||||
-5.8079170227e+01, /* 0xc2685112 */
|
||||
-3.1447946548e+01, /* 0xc1fb9565 */
|
||||
};
|
||||
static const float pS3[5] = {
|
||||
3.5856033325e+01, /* 0x420f6c94 */
|
||||
3.6151397705e+02, /* 0x43b4c1ca */
|
||||
1.1936077881e+03, /* 0x44953373 */
|
||||
1.1279968262e+03, /* 0x448cffe6 */
|
||||
1.7358093262e+02, /* 0x432d94b8 */
|
||||
};
|
||||
|
||||
static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
-8.8753431271e-08, /* 0xb3be98b7 */
|
||||
-7.0303097367e-02, /* 0xbd8ffb12 */
|
||||
-1.4507384300e+00, /* 0xbfb9b1cc */
|
||||
-7.6356959343e+00, /* 0xc0f4579f */
|
||||
-1.1193166733e+01, /* 0xc1331736 */
|
||||
-3.2336456776e+00, /* 0xc04ef40d */
|
||||
};
|
||||
static const float pS2[5] = {
|
||||
2.2220300674e+01, /* 0x41b1c32d */
|
||||
1.3620678711e+02, /* 0x430834f0 */
|
||||
2.7047027588e+02, /* 0x43873c32 */
|
||||
1.5387539673e+02, /* 0x4319e01a */
|
||||
1.4657617569e+01, /* 0x416a859a */
|
||||
};
|
||||
|
||||
/* Note: This function is only called for ix>=0x40000000 (see above) */
|
||||
static float pzerof(float x)
|
||||
{
|
||||
const float *p,*q;
|
||||
float z,r,s;
|
||||
int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
assert(ix>=0x40000000 && ix<=0x48000000);
|
||||
if(ix>=0x41000000) {p = pR8; q= pS8;}
|
||||
else if(ix>=0x40f71c58){p = pR5; q= pS5;}
|
||||
else if(ix>=0x4036db68){p = pR3; q= pS3;}
|
||||
else {p = pR2; q= pS2;}
|
||||
z = one/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
||||
return one+ r/s;
|
||||
}
|
||||
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qzero is
|
||||
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pzero by
|
||||
* qzero(x) = s*(-1.25 + (R/S))
|
||||
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
|
||||
* S = 1 + qS0*s^2 + ... + qS5*s^12
|
||||
* and
|
||||
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
|
||||
*/
|
||||
static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.0000000000e+00, /* 0x00000000 */
|
||||
7.3242187500e-02, /* 0x3d960000 */
|
||||
1.1768206596e+01, /* 0x413c4a93 */
|
||||
5.5767340088e+02, /* 0x440b6b19 */
|
||||
8.8591972656e+03, /* 0x460a6cca */
|
||||
3.7014625000e+04, /* 0x471096a0 */
|
||||
};
|
||||
static const float qS8[6] = {
|
||||
1.6377603149e+02, /* 0x4323c6aa */
|
||||
8.0983447266e+03, /* 0x45fd12c2 */
|
||||
1.4253829688e+05, /* 0x480b3293 */
|
||||
8.0330925000e+05, /* 0x49441ed4 */
|
||||
8.4050156250e+05, /* 0x494d3359 */
|
||||
-3.4389928125e+05, /* 0xc8a7eb69 */
|
||||
};
|
||||
|
||||
static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
1.8408595828e-11, /* 0x2da1ec79 */
|
||||
7.3242180049e-02, /* 0x3d95ffff */
|
||||
5.8356351852e+00, /* 0x40babd86 */
|
||||
1.3511157227e+02, /* 0x43071c90 */
|
||||
1.0272437744e+03, /* 0x448067cd */
|
||||
1.9899779053e+03, /* 0x44f8bf4b */
|
||||
};
|
||||
static const float qS5[6] = {
|
||||
8.2776611328e+01, /* 0x42a58da0 */
|
||||
2.0778142090e+03, /* 0x4501dd07 */
|
||||
1.8847289062e+04, /* 0x46933e94 */
|
||||
5.6751113281e+04, /* 0x475daf1d */
|
||||
3.5976753906e+04, /* 0x470c88c1 */
|
||||
-5.3543427734e+03, /* 0xc5a752be */
|
||||
};
|
||||
|
||||
static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
4.3774099900e-09, /* 0x3196681b */
|
||||
7.3241114616e-02, /* 0x3d95ff70 */
|
||||
3.3442313671e+00, /* 0x405607e3 */
|
||||
4.2621845245e+01, /* 0x422a7cc5 */
|
||||
1.7080809021e+02, /* 0x432acedf */
|
||||
1.6673394775e+02, /* 0x4326bbe4 */
|
||||
};
|
||||
static const float qS3[6] = {
|
||||
4.8758872986e+01, /* 0x42430916 */
|
||||
7.0968920898e+02, /* 0x44316c1c */
|
||||
3.7041481934e+03, /* 0x4567825f */
|
||||
6.4604252930e+03, /* 0x45c9e367 */
|
||||
2.5163337402e+03, /* 0x451d4557 */
|
||||
-1.4924745178e+02, /* 0xc3153f59 */
|
||||
};
|
||||
|
||||
static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
1.5044444979e-07, /* 0x342189db */
|
||||
7.3223426938e-02, /* 0x3d95f62a */
|
||||
1.9981917143e+00, /* 0x3fffc4bf */
|
||||
1.4495602608e+01, /* 0x4167edfd */
|
||||
3.1666231155e+01, /* 0x41fd5471 */
|
||||
1.6252708435e+01, /* 0x4182058c */
|
||||
};
|
||||
static const float qS2[6] = {
|
||||
3.0365585327e+01, /* 0x41f2ecb8 */
|
||||
2.6934811401e+02, /* 0x4386ac8f */
|
||||
8.4478375244e+02, /* 0x44533229 */
|
||||
8.8293585205e+02, /* 0x445cbbe5 */
|
||||
2.1266638184e+02, /* 0x4354aa98 */
|
||||
-5.3109550476e+00, /* 0xc0a9f358 */
|
||||
};
|
||||
|
||||
/* Note: This function is only called for ix>=0x40000000 (see above) */
|
||||
static float qzerof(float x)
|
||||
{
|
||||
const float *p,*q;
|
||||
float s,r,z;
|
||||
int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
assert(ix>=0x40000000 && ix<=0x48000000);
|
||||
if(ix>=0x41000000) {p = qR8; q= qS8;}
|
||||
else if(ix>=0x40f71c58){p = qR5; q= qS5;}
|
||||
else if(ix>=0x4036db68){p = qR3; q= qS3;}
|
||||
else {p = qR2; q= qS2;}
|
||||
z = one/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
|
||||
return (-(float).125 + r/s)/x;
|
||||
}
|
340
src/e_j1f.c
340
src/e_j1f.c
|
@ -1,340 +0,0 @@
|
|||
/* e_j1f.c -- float version of e_j1.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include "cdefs-compat.h"
|
||||
//__FBSDID("$FreeBSD: src/lib/msun/src/e_j1f.c,v 1.8 2008/02/22 02:30:35 das Exp $");
|
||||
|
||||
#include <openlibm_math.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static float ponef(float), qonef(float);
|
||||
|
||||
static const float
|
||||
huge = 1e30,
|
||||
one = 1.0,
|
||||
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
|
||||
tpi = 6.3661974669e-01, /* 0x3f22f983 */
|
||||
/* R0/S0 on [0,2] */
|
||||
r00 = -6.2500000000e-02, /* 0xbd800000 */
|
||||
r01 = 1.4070566976e-03, /* 0x3ab86cfd */
|
||||
r02 = -1.5995563444e-05, /* 0xb7862e36 */
|
||||
r03 = 4.9672799207e-08, /* 0x335557d2 */
|
||||
s01 = 1.9153760746e-02, /* 0x3c9ce859 */
|
||||
s02 = 1.8594678841e-04, /* 0x3942fab6 */
|
||||
s03 = 1.1771846857e-06, /* 0x359dffc2 */
|
||||
s04 = 5.0463624390e-09, /* 0x31ad6446 */
|
||||
s05 = 1.2354227016e-11; /* 0x2d59567e */
|
||||
|
||||
static const float zero = 0.0;
|
||||
|
||||
DLLEXPORT float
|
||||
__ieee754_j1f(float x)
|
||||
{
|
||||
float z, s,c,ss,cc,r,u,v,y;
|
||||
int32_t hx,ix;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7f800000) return one/x;
|
||||
y = fabsf(x);
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
s = sinf(y);
|
||||
c = cosf(y);
|
||||
ss = -s-c;
|
||||
cc = s-c;
|
||||
if(ix<0x7f000000) { /* make sure y+y not overflow */
|
||||
z = cosf(y+y);
|
||||
if ((s*c)>zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
/*
|
||||
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
|
||||
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
|
||||
else {
|
||||
u = ponef(y); v = qonef(y);
|
||||
z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
|
||||
}
|
||||
if(hx<0) return -z;
|
||||
else return z;
|
||||
}
|
||||
if(ix<0x32000000) { /* |x|<2**-27 */
|
||||
if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
|
||||
}
|
||||
z = x*x;
|
||||
r = z*(r00+z*(r01+z*(r02+z*r03)));
|
||||
s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
|
||||
r *= x;
|
||||
return(x*(float)0.5+r/s);
|
||||
}
|
||||
|
||||
static const float U0[5] = {
|
||||
-1.9605709612e-01, /* 0xbe48c331 */
|
||||
5.0443872809e-02, /* 0x3d4e9e3c */
|
||||
-1.9125689287e-03, /* 0xbafaaf2a */
|
||||
2.3525259166e-05, /* 0x37c5581c */
|
||||
-9.1909917899e-08, /* 0xb3c56003 */
|
||||
};
|
||||
static const float V0[5] = {
|
||||
1.9916731864e-02, /* 0x3ca3286a */
|
||||
2.0255257550e-04, /* 0x3954644b */
|
||||
1.3560879779e-06, /* 0x35b602d4 */
|
||||
6.2274145840e-09, /* 0x31d5f8eb */
|
||||
1.6655924903e-11, /* 0x2d9281cf */
|
||||
};
|
||||
|
||||
DLLEXPORT float
|
||||
__ieee754_y1f(float x)
|
||||
{
|
||||
float z, s,c,ss,cc,u,v;
|
||||
int32_t hx,ix;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
|
||||
if(ix>=0x7f800000) return one/(x+x*x);
|
||||
if(ix==0) return -one/zero;
|
||||
if(hx<0) return zero/zero;
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
s = sinf(x);
|
||||
c = cosf(x);
|
||||
ss = -s-c;
|
||||
cc = s-c;
|
||||
if(ix<0x7f000000) { /* make sure x+x not overflow */
|
||||
z = cosf(x+x);
|
||||
if ((s*c)>zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
|
||||
* where x0 = x-3pi/4
|
||||
* Better formula:
|
||||
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = -1/sqrt(2) * (cos(x) + sin(x))
|
||||
* To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.
|
||||
*/
|
||||
if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
|
||||
else {
|
||||
u = ponef(x); v = qonef(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if(ix<=0x24800000) { /* x < 2**-54 */
|
||||
return(-tpi/x);
|
||||
}
|
||||
z = x*x;
|
||||
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
|
||||
v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
|
||||
return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of pone is
|
||||
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* pone(x) = 1 + (R/S)
|
||||
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
|
||||
* S = 1 + ps0*s^2 + ... + ps4*s^10
|
||||
* and
|
||||
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
|
||||
*/
|
||||
|
||||
static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.0000000000e+00, /* 0x00000000 */
|
||||
1.1718750000e-01, /* 0x3df00000 */
|
||||
1.3239480972e+01, /* 0x4153d4ea */
|
||||
4.1205184937e+02, /* 0x43ce06a3 */
|
||||
3.8747453613e+03, /* 0x45722bed */
|
||||
7.9144794922e+03, /* 0x45f753d6 */
|
||||
};
|
||||
static const float ps8[5] = {
|
||||
1.1420736694e+02, /* 0x42e46a2c */
|
||||
3.6509309082e+03, /* 0x45642ee5 */
|
||||
3.6956207031e+04, /* 0x47105c35 */
|
||||
9.7602796875e+04, /* 0x47bea166 */
|
||||
3.0804271484e+04, /* 0x46f0a88b */
|
||||
};
|
||||
|
||||
static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
1.3199052094e-11, /* 0x2d68333f */
|
||||
1.1718749255e-01, /* 0x3defffff */
|
||||
6.8027510643e+00, /* 0x40d9b023 */
|
||||
1.0830818176e+02, /* 0x42d89dca */
|
||||
5.1763616943e+02, /* 0x440168b7 */
|
||||
5.2871520996e+02, /* 0x44042dc6 */
|
||||
};
|
||||
static const float ps5[5] = {
|
||||
5.9280597687e+01, /* 0x426d1f55 */
|
||||
9.9140142822e+02, /* 0x4477d9b1 */
|
||||
5.3532670898e+03, /* 0x45a74a23 */
|
||||
7.8446904297e+03, /* 0x45f52586 */
|
||||
1.5040468750e+03, /* 0x44bc0180 */
|
||||
};
|
||||
|
||||
static const float pr3[6] = {
|
||||
3.0250391081e-09, /* 0x314fe10d */
|
||||
1.1718686670e-01, /* 0x3defffab */
|
||||
3.9329774380e+00, /* 0x407bb5e7 */
|
||||
3.5119403839e+01, /* 0x420c7a45 */
|
||||
9.1055007935e+01, /* 0x42b61c2a */
|
||||
4.8559066772e+01, /* 0x42423c7c */
|
||||
};
|
||||
static const float ps3[5] = {
|
||||
3.4791309357e+01, /* 0x420b2a4d */
|
||||
3.3676245117e+02, /* 0x43a86198 */
|
||||
1.0468714600e+03, /* 0x4482dbe3 */
|
||||
8.9081134033e+02, /* 0x445eb3ed */
|
||||
1.0378793335e+02, /* 0x42cf936c */
|
||||
};
|
||||
|
||||
static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
1.0771083225e-07, /* 0x33e74ea8 */
|
||||
1.1717621982e-01, /* 0x3deffa16 */
|
||||
2.3685150146e+00, /* 0x401795c0 */
|
||||
1.2242610931e+01, /* 0x4143e1bc */
|
||||
1.7693971634e+01, /* 0x418d8d41 */
|
||||
5.0735230446e+00, /* 0x40a25a4d */
|
||||
};
|
||||
static const float ps2[5] = {
|
||||
2.1436485291e+01, /* 0x41ab7dec */
|
||||
1.2529022980e+02, /* 0x42fa9499 */
|
||||
2.3227647400e+02, /* 0x436846c7 */
|
||||
1.1767937469e+02, /* 0x42eb5bd7 */
|
||||
8.3646392822e+00, /* 0x4105d590 */
|
||||
};
|
||||
|
||||
/* Note: This function is only called for ix>=0x40000000 (see above) */
|
||||
static float ponef(float x)
|
||||
{
|
||||
const float *p,*q;
|
||||
float z,r,s;
|
||||
int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
assert(ix>=0x40000000 && ix<=0x48000000);
|
||||
if(ix>=0x41000000) {p = pr8; q= ps8;}
|
||||
else if(ix>=0x40f71c58){p = pr5; q= ps5;}
|
||||
else if(ix>=0x4036db68){p = pr3; q= ps3;}
|
||||
else {p = pr2; q= ps2;}
|
||||
z = one/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
||||
return one+ r/s;
|
||||
}
|
||||
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qone is
|
||||
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* qone(x) = s*(0.375 + (R/S))
|
||||
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
|
||||
* S = 1 + qs1*s^2 + ... + qs6*s^12
|
||||
* and
|
||||
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
|
||||
*/
|
||||
|
||||
static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.0000000000e+00, /* 0x00000000 */
|
||||
-1.0253906250e-01, /* 0xbdd20000 */
|
||||
-1.6271753311e+01, /* 0xc1822c8d */
|
||||
-7.5960174561e+02, /* 0xc43de683 */
|
||||
-1.1849806641e+04, /* 0xc639273a */
|
||||
-4.8438511719e+04, /* 0xc73d3683 */
|
||||
};
|
||||
static const float qs8[6] = {
|
||||
1.6139537048e+02, /* 0x43216537 */
|
||||
7.8253862305e+03, /* 0x45f48b17 */
|
||||
1.3387534375e+05, /* 0x4802bcd6 */
|
||||
7.1965775000e+05, /* 0x492fb29c */
|
||||
6.6660125000e+05, /* 0x4922be94 */
|
||||
-2.9449025000e+05, /* 0xc88fcb48 */
|
||||
};
|
||||
|
||||
static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
-2.0897993405e-11, /* 0xadb7d219 */
|
||||
-1.0253904760e-01, /* 0xbdd1fffe */
|
||||
-8.0564479828e+00, /* 0xc100e736 */
|
||||
-1.8366960144e+02, /* 0xc337ab6b */
|
||||
-1.3731937256e+03, /* 0xc4aba633 */
|
||||
-2.6124443359e+03, /* 0xc523471c */
|
||||
};
|
||||
static const float qs5[6] = {
|
||||
8.1276550293e+01, /* 0x42a28d98 */
|
||||
1.9917987061e+03, /* 0x44f8f98f */
|
||||
1.7468484375e+04, /* 0x468878f8 */
|
||||
4.9851425781e+04, /* 0x4742bb6d */
|
||||
2.7948074219e+04, /* 0x46da5826 */
|
||||
-4.7191835938e+03, /* 0xc5937978 */
|
||||
};
|
||||
|
||||
static const float qr3[6] = {
|
||||
-5.0783124372e-09, /* 0xb1ae7d4f */
|
||||
-1.0253783315e-01, /* 0xbdd1ff5b */
|
||||
-4.6101160049e+00, /* 0xc0938612 */
|
||||
-5.7847221375e+01, /* 0xc267638e */
|
||||
-2.2824453735e+02, /* 0xc3643e9a */
|
||||
-2.1921012878e+02, /* 0xc35b35cb */
|
||||
};
|
||||
static const float qs3[6] = {
|
||||
4.7665153503e+01, /* 0x423ea91e */
|
||||
6.7386511230e+02, /* 0x4428775e */
|
||||
3.3801528320e+03, /* 0x45534272 */
|
||||
5.5477290039e+03, /* 0x45ad5dd5 */
|
||||
1.9031191406e+03, /* 0x44ede3d0 */
|
||||
-1.3520118713e+02, /* 0xc3073381 */
|
||||
};
|
||||
|
||||
static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
-1.7838172539e-07, /* 0xb43f8932 */
|
||||
-1.0251704603e-01, /* 0xbdd1f475 */
|
||||
-2.7522056103e+00, /* 0xc0302423 */
|
||||
-1.9663616180e+01, /* 0xc19d4f16 */
|
||||
-4.2325313568e+01, /* 0xc2294d1f */
|
||||
-2.1371921539e+01, /* 0xc1aaf9b2 */
|
||||
};
|
||||
static const float qs2[6] = {
|
||||
2.9533363342e+01, /* 0x41ec4454 */
|
||||
2.5298155212e+02, /* 0x437cfb47 */
|
||||
7.5750280762e+02, /* 0x443d602e */
|
||||
7.3939318848e+02, /* 0x4438d92a */
|
||||
1.5594900513e+02, /* 0x431bf2f2 */
|
||||
-4.9594988823e+00, /* 0xc09eb437 */
|
||||
};
|
||||
|
||||
/* Note: This function is only called for ix>=0x40000000 (see above) */
|
||||
static float qonef(float x)
|
||||
{
|
||||
const float *p,*q;
|
||||
float s,r,z;
|
||||
int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
assert(ix>=0x40000000 && ix<=0x48000000);
|
||||
if(ix>=0x40200000) {p = qr8; q= qs8;}
|
||||
else if(ix>=0x40f71c58){p = qr5; q= qs5;}
|
||||
else if(ix>=0x4036db68){p = qr3; q= qs3;}
|
||||
else {p = qr2; q= qs2;}
|
||||
z = one/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
|
||||
return ((float).375 + r/s)/x;
|
||||
}
|
200
src/e_jnf.c
200
src/e_jnf.c
|
@ -1,200 +0,0 @@
|
|||
/* e_jnf.c -- float version of e_jn.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include "cdefs-compat.h"
|
||||
//__FBSDID("$FreeBSD: src/lib/msun/src/e_jnf.c,v 1.11 2010/11/13 10:54:10 uqs Exp $");
|
||||
|
||||
#include <openlibm_math.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const float
|
||||
two = 2.0000000000e+00, /* 0x40000000 */
|
||||
one = 1.0000000000e+00; /* 0x3F800000 */
|
||||
|
||||
static const float zero = 0.0000000000e+00;
|
||||
|
||||
DLLEXPORT float
|
||||
__ieee754_jnf(int n, float x)
|
||||
{
|
||||
int32_t i,hx,ix, sgn;
|
||||
float a, b, temp, di;
|
||||
float z, w;
|
||||
|
||||
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
||||
* Thus, J(-n,x) = J(n,-x)
|
||||
*/
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* if J(n,NaN) is NaN */
|
||||
if(ix>0x7f800000) return x+x;
|
||||
if(n<0){
|
||||
n = -n;
|
||||
x = -x;
|
||||
hx ^= 0x80000000;
|
||||
}
|
||||
if(n==0) return(__ieee754_j0f(x));
|
||||
if(n==1) return(__ieee754_j1f(x));
|
||||
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
|
||||
x = fabsf(x);
|
||||
if(ix==0||ix>=0x7f800000) /* if x is 0 or inf */
|
||||
b = zero;
|
||||
else if((float)n<=x) {
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
a = __ieee754_j0f(x);
|
||||
b = __ieee754_j1f(x);
|
||||
for(i=1;i<n;i++){
|
||||
temp = b;
|
||||
b = b*((float)(i+i)/x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
} else {
|
||||
if(ix<0x30800000) { /* x < 2**-29 */
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if(n>33) /* underflow */
|
||||
b = zero;
|
||||
else {
|
||||
temp = x*(float)0.5; b = temp;
|
||||
for (a=one,i=2;i<=n;i++) {
|
||||
a *= (float)i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b/a;
|
||||
}
|
||||
} else {
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
float t,v;
|
||||
float q0,q1,h,tmp; int32_t k,m;
|
||||
w = (n+n)/(float)x; h = (float)2.0/(float)x;
|
||||
q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1;
|
||||
while(q1<(float)1.0e9) {
|
||||
k += 1; z += h;
|
||||
tmp = z*q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
m = n+n;
|
||||
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
|
||||
a = t;
|
||||
b = one;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
v = two/x;
|
||||
tmp = tmp*__ieee754_logf(fabsf(v*tmp));
|
||||
if(tmp<(float)8.8721679688e+01) {
|
||||
for(i=n-1,di=(float)(i+i);i>0;i--){
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b/x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
}
|
||||
} else {
|
||||
for(i=n-1,di=(float)(i+i);i>0;i--){
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b/x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if(b>(float)1e10) {
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = one;
|
||||
}
|
||||
}
|
||||
}
|
||||
z = __ieee754_j0f(x);
|
||||
w = __ieee754_j1f(x);
|
||||
if (fabsf(z) >= fabsf(w))
|
||||
b = (t*z/b);
|
||||
else
|
||||
b = (t*w/a);
|
||||
}
|
||||
}
|
||||
if(sgn==1) return -b; else return b;
|
||||
}
|
||||
|
||||
DLLEXPORT float
|
||||
__ieee754_ynf(int n, float x)
|
||||
{
|
||||
int32_t i,hx,ix,ib;
|
||||
int32_t sign;
|
||||
float a, b, temp;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* if Y(n,NaN) is NaN */
|
||||
if(ix>0x7f800000) return x+x;
|
||||
if(ix==0) return -one/zero;
|
||||
if(hx<0) return zero/zero;
|
||||
sign = 1;
|
||||
if(n<0){
|
||||
n = -n;
|
||||
sign = 1 - ((n&1)<<1);
|
||||
}
|
||||
if(n==0) return(__ieee754_y0f(x));
|
||||
if(n==1) return(sign*__ieee754_y1f(x));
|
||||
if(ix==0x7f800000) return zero;
|
||||
|
||||
a = __ieee754_y0f(x);
|
||||
b = __ieee754_y1f(x);
|
||||
/* quit if b is -inf */
|
||||
GET_FLOAT_WORD(ib,b);
|
||||
for(i=1;i<n&&ib!=0xff800000;i++){
|
||||
temp = b;
|
||||
b = ((float)(i+i)/x)*b - a;
|
||||
GET_FLOAT_WORD(ib,b);
|
||||
a = temp;
|
||||
}
|
||||
if(sign>0) return b; else return -b;
|
||||
}
|
|
@ -308,12 +308,6 @@ irint(double x)
|
|||
#define __ieee754_log2f log2f
|
||||
#define __ieee754_sinhf sinhf
|
||||
#define __ieee754_hypotf hypotf
|
||||
#define __ieee754_j0f j0f
|
||||
#define __ieee754_j1f j1f
|
||||
#define __ieee754_y0f y0f
|
||||
#define __ieee754_y1f y1f
|
||||
#define __ieee754_jnf jnf
|
||||
#define __ieee754_ynf ynf
|
||||
#define __ieee754_remainderf remainderf
|
||||
|
||||
/* fdlibm kernel function */
|
||||
|
|
|
@ -2918,6 +2918,7 @@ isnormal_test (void)
|
|||
print_max_error ("isnormal", 0, 0);
|
||||
}
|
||||
|
||||
#ifdef TEST_DOUBLE
|
||||
static void
|
||||
j0_test (void)
|
||||
{
|
||||
|
@ -3055,6 +3056,7 @@ jn_test (void)
|
|||
|
||||
print_max_error ("jn", DELTAjn, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
static void
|
||||
|
@ -4121,6 +4123,7 @@ trunc_test (void)
|
|||
print_max_error ("trunc", 0, 0);
|
||||
}
|
||||
|
||||
#ifdef TEST_DOUBLE
|
||||
static void
|
||||
y0_test (void)
|
||||
{
|
||||
|
@ -4256,6 +4259,7 @@ yn_test (void)
|
|||
print_max_error ("yn", DELTAyn, 0);
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
@ -4534,6 +4538,7 @@ main (int argc, char **argv)
|
|||
ctanh_test ();
|
||||
#endif
|
||||
|
||||
#ifdef TEST_DOUBLE
|
||||
/* Bessel functions: */
|
||||
j0_test ();
|
||||
j1_test ();
|
||||
|
@ -4541,6 +4546,7 @@ main (int argc, char **argv)
|
|||
y0_test ();
|
||||
y1_test ();
|
||||
yn_test ();
|
||||
#endif
|
||||
|
||||
if (output_ulps)
|
||||
fclose (ulps_file);
|
||||
|
|
Loading…
Reference in a new issue