Merge pull request #85 from NuxiNL/remove-extensions

Remove non-standard functions from OpenLibm
This commit is contained in:
Viral B. Shah 2015-02-12 19:38:00 +05:30
commit 8d0843a324
24 changed files with 28 additions and 1466 deletions

View file

@ -1,8 +1,7 @@
$(CUR_SRCS) = e_exp.S e_fmod.S e_log.S e_log10.S \ $(CUR_SRCS) = e_exp.S e_fmod.S e_log.S e_log10.S \
e_remainder.S e_sqrt.S s_ceil.S s_copysign.S \ e_remainder.S e_sqrt.S s_ceil.S s_copysign.S \
s_finite.S s_floor.S s_llrint.S s_logb.S s_lrint.S \ s_floor.S s_llrint.S s_logb.S s_lrint.S \
s_remquo.S s_rint.S s_significand.S s_tan.S \ s_remquo.S s_rint.S s_tan.S s_trunc.S
s_trunc.S
ifneq ($(OS), WINNT) ifneq ($(OS), WINNT)
$(CUR_SRCS) += s_scalbn.S s_scalbnf.S s_scalbnl.S $(CUR_SRCS) += s_scalbn.S s_scalbnf.S s_scalbnl.S
@ -12,7 +11,7 @@ endif
$(CUR_SRCS)+= e_log10f.S e_logf.S e_remainderf.S \ $(CUR_SRCS)+= e_log10f.S e_logf.S e_remainderf.S \
e_sqrtf.S s_ceilf.S s_copysignf.S s_floorf.S \ e_sqrtf.S s_ceilf.S s_copysignf.S s_floorf.S \
s_llrintf.S s_logbf.S s_lrintf.S \ s_llrintf.S s_logbf.S s_lrintf.S \
s_remquof.S s_rintf.S s_significandf.S s_truncf.S s_remquof.S s_rintf.S s_truncf.S
# long double counterparts # long double counterparts
$(CUR_SRCS)+= e_remainderl.S e_sqrtl.S s_ceill.S s_copysignl.S \ $(CUR_SRCS)+= e_remainderl.S e_sqrtl.S s_ceill.S s_copysignl.S \

View file

@ -1,23 +0,0 @@
/*
* Written by:
* J.T. Conklin (jtc@netbsd.org)
* Public domain.
*/
#include <i387/bsd_asm.h>
//__FBSDID("$FreeBSD: src/lib/msun/i387/s_finite.S,v 1.10 2011/01/07 16:13:12 kib Exp $")
ENTRY(finite)
movl 8(%esp),%eax
andl $0x7ff00000, %eax
cmpl $0x7ff00000, %eax
setneb %al
andl $0x000000ff, %eax
ret
END(finite)
/* Enable stack protection */
#if defined(__linux__) && defined(__ELF__)
.section .note.GNU-stack,"",%progbits
#endif

View file

@ -1,21 +0,0 @@
/*
* Written by:
* J.T. Conklin (jtc@netbsd.org)
* Public domain.
*/
#include <i387/bsd_asm.h>
//__FBSDID("$FreeBSD: src/lib/msun/i387/s_significand.S,v 1.10 2011/01/07 16:13:12 kib Exp $")
ENTRY(significand)
fldl 4(%esp)
fxtract
fstp %st(1)
ret
END(significand)
/* Enable stack protection */
#if defined(__linux__) && defined(__ELF__)
.section .note.GNU-stack,"",%progbits
#endif

View file

@ -1,22 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <i387/bsd_asm.h>
//__FBSDID("$FreeBSD: src/lib/msun/i387/s_significandf.S,v 1.3 2011/01/07 16:13:12 kib Exp $");
/* RCSID("$NetBSD: s_significandf.S,v 1.3 1995/05/09 00:24:07 jtc Exp $") */
ENTRY(significandf)
flds 4(%esp)
fxtract
fstp %st(1)
ret
END(significandf)
/* Enable stack protection */
#if defined(__linux__) && defined(__ELF__)
.section .note.GNU-stack,"",%progbits
#endif

View file

@ -194,6 +194,9 @@ extern int signgam;
#if defined(__cplusplus) #if defined(__cplusplus)
extern "C" { extern "C" {
#endif #endif
/* Symbol present when OpenLibm is used. */
int isopenlibm(void);
/* /*
* ANSI/POSIX * ANSI/POSIX
*/ */
@ -280,14 +283,6 @@ double jn(int, double);
double y0(double); double y0(double);
double y1(double); double y1(double);
double yn(int, double); double yn(int, double);
#if __XSI_VISIBLE <= 500 || __BSD_VISIBLE
double gamma(double);
#endif
#if __XSI_VISIBLE <= 600 || __BSD_VISIBLE
double scalb(double, double);
#endif
#endif /* __BSD_VISIBLE || __XSI_VISIBLE */ #endif /* __BSD_VISIBLE || __XSI_VISIBLE */
#if __BSD_VISIBLE || __ISO_C_VISIBLE >= 1999 #if __BSD_VISIBLE || __ISO_C_VISIBLE >= 1999
@ -307,26 +302,18 @@ double trunc(double);
* BSD math library entry points * BSD math library entry points
*/ */
#if __BSD_VISIBLE #if __BSD_VISIBLE
double drem(double, double);
int finite(double) __pure2;
int isnanf(float) __pure2; int isnanf(float) __pure2;
/* /*
* Reentrant version of gamma & lgamma; passes signgam back by reference * Reentrant version of lgamma; passes signgam back by reference as the
* as the second argument; user must allocate space for signgam. * second argument; user must allocate space for signgam.
*/ */
double gamma_r(double, int *);
double lgamma_r(double, int *); double lgamma_r(double, int *);
/* /*
* Single sine/cosine function. * Single sine/cosine function.
*/ */
void sincos(double, double *, double *); void sincos(double, double *, double *);
/*
* IEEE Test Vector
*/
double significand(double);
#endif /* __BSD_VISIBLE */ #endif /* __BSD_VISIBLE */
/* float versions of ANSI/POSIX functions */ /* float versions of ANSI/POSIX functions */
@ -400,34 +387,16 @@ float fminf(float, float) __pure2;
* float versions of BSD math library entry points * float versions of BSD math library entry points
*/ */
#if __BSD_VISIBLE #if __BSD_VISIBLE
float dremf(float, float);
int finitef(float) __pure2;
float gammaf(float);
float j0f(float);
float j1f(float);
float jnf(int, float);
float scalbf(float, float);
float y0f(float);
float y1f(float);
float ynf(int, float);
/* /*
* Float versions of reentrant version of gamma & lgamma; passes * Float versions of reentrant version of lgamma; passes signgam back by
* signgam back by reference as the second argument; user must * reference as the second argument; user must allocate space for signgam.
* allocate space for signgam.
*/ */
float gammaf_r(float, int *);
float lgammaf_r(float, int *); float lgammaf_r(float, int *);
/* /*
* Single sine/cosine function. * Single sine/cosine function.
*/ */
void sincosf(float, float *, float *); void sincosf(float, float *, float *);
/*
* float version of IEEE Test Vector
*/
float significandf(float);
#endif /* __BSD_VISIBLE */ #endif /* __BSD_VISIBLE */
/* /*

View file

@ -1,11 +1,10 @@
$(CUR_SRCS) = common.c \ $(CUR_SRCS) = common.c \
e_acos.c e_acosf.c e_acosh.c e_acoshf.c e_asin.c e_asinf.c \ e_acos.c e_acosf.c e_acosh.c e_acoshf.c e_asin.c e_asinf.c \
e_atan2.c e_atan2f.c e_atanh.c e_atanhf.c e_cosh.c e_coshf.c e_exp.c \ e_atan2.c e_atan2f.c e_atanh.c e_atanhf.c e_cosh.c e_coshf.c e_exp.c \
e_expf.c e_fmod.c e_fmodf.c e_gamma.c e_gamma_r.c e_gammaf.c \ e_expf.c e_fmod.c e_fmodf.c e_hypot.c e_hypotf.c e_j0.c e_j1.c \
e_gammaf_r.c e_hypot.c e_hypotf.c e_j0.c e_j0f.c e_j1.c e_j1f.c \ e_jn.c e_lgamma.c e_lgamma_r.c e_lgammaf.c e_lgammaf_r.c \
e_jn.c e_jnf.c e_lgamma.c e_lgamma_r.c e_lgammaf.c e_lgammaf_r.c \
e_lgammal.c e_log.c e_log10.c e_log10f.c e_log2.c e_log2f.c e_logf.c \ e_lgammal.c e_log.c e_log10.c e_log10f.c e_log2.c e_log2f.c e_logf.c \
e_pow.c e_powf.c e_remainder.c e_remainderf.c e_scalb.c e_scalbf.c \ e_pow.c e_powf.c e_remainder.c e_remainderf.c \
e_rem_pio2.c e_rem_pio2f.c \ e_rem_pio2.c e_rem_pio2f.c \
e_sinh.c e_sinhf.c e_sqrt.c e_sqrtf.c \ e_sinh.c e_sinhf.c e_sqrt.c e_sqrtf.c \
k_cos.c k_exp.c k_expf.c k_rem_pio2.c k_sin.c k_tan.c \ k_cos.c k_exp.c k_expf.c k_rem_pio2.c k_sin.c k_tan.c \
@ -15,7 +14,6 @@ $(CUR_SRCS) = common.c \
s_copysign.c s_copysignf.c s_cos.c s_cosf.c \ s_copysign.c s_copysignf.c s_cos.c s_cosf.c \
s_csqrt.c s_csqrtf.c s_erf.c s_erff.c \ s_csqrt.c s_csqrtf.c s_erf.c s_erff.c \
s_exp2.c s_exp2f.c s_expm1.c s_expm1f.c s_fabs.c s_fabsf.c s_fdim.c \ s_exp2.c s_exp2f.c s_expm1.c s_expm1f.c s_fabs.c s_fabsf.c s_fdim.c \
s_finite.c s_finitef.c \
s_floor.c s_floorf.c s_fma.c s_fmaf.c \ s_floor.c s_floorf.c s_fma.c s_fmaf.c \
s_fmax.c s_fmaxf.c s_fmin.c \ s_fmax.c s_fmaxf.c s_fmin.c \
s_fminf.c s_fpclassify.c \ s_fminf.c s_fpclassify.c \
@ -28,10 +26,10 @@ $(CUR_SRCS) = common.c \
s_nexttowardf.c s_remquo.c s_remquof.c \ s_nexttowardf.c s_remquo.c s_remquof.c \
s_rint.c s_rintf.c s_round.c s_roundf.c s_roundl.c \ s_rint.c s_rintf.c s_round.c s_roundf.c s_roundl.c \
s_scalbln.c s_scalbn.c s_scalbnf.c s_signbit.c \ s_scalbln.c s_scalbn.c s_scalbnf.c s_signbit.c \
s_signgam.c s_significand.c s_significandf.c s_sin.c s_sincos.c \ s_signgam.c s_sin.c s_sincos.c \
s_sinf.c s_sincosf.c s_tan.c s_tanf.c s_tanh.c s_tanhf.c s_tgammaf.c \ s_sinf.c s_sincosf.c s_tan.c s_tanf.c s_tanh.c s_tanhf.c s_tgammaf.c \
s_trunc.c s_truncf.c s_cpow.c s_cpowf.c \ s_trunc.c s_truncf.c s_cpow.c s_cpowf.c \
w_cabs.c w_cabsf.c w_drem.c w_dremf.c w_cabs.c w_cabsf.c
ifneq ($(OS), WINNT) ifneq ($(OS), WINNT)
$(CUR_SRCS) += s_nan.c $(CUR_SRCS) += s_nan.c
@ -54,8 +52,7 @@ $(CUR_SRCS) += e_acosl.c e_asinl.c e_atan2l.c e_fmodl.c \
s_casinl.c s_ctanl.c \ s_casinl.c s_ctanl.c \
s_cimagl.c s_conjl.c s_creall.c s_cacoshl.c s_catanhl.c s_casinhl.c \ s_cimagl.c s_conjl.c s_creall.c s_cacoshl.c s_catanhl.c s_casinhl.c \
s_catanl.c s_csinl.c s_cacosl.c s_cexpl.c s_csinhl.c s_ccoshl.c \ s_catanl.c s_csinl.c s_cacosl.c s_cexpl.c s_csinhl.c s_ccoshl.c \
s_clogl.c s_ctanhl.c s_ccosl.c s_clogl.c s_ctanhl.c s_ccosl.c s_cbrtl.c
# s_cbrtl.c
endif endif
# C99 complex functions # C99 complex functions

View file

@ -1,3 +1,5 @@
#include <openlibm_math.h>
#include "math_private.h" #include "math_private.h"
DLLEXPORT int isopenlibm(void) { DLLEXPORT int isopenlibm(void) {

View file

@ -1,36 +0,0 @@
/* @(#)e_gamma.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
#include "cdefs-compat.h"
//__FBSDID("$FreeBSD: src/lib/msun/src/e_gamma.c,v 1.8 2008/02/22 02:30:34 das Exp $");
/* __ieee754_gamma(x)
* Return the logarithm of the Gamma function of x.
*
* Method: call __ieee754_gamma_r
*/
#include <openlibm_math.h>
#include "math_private.h"
DLLEXPORT double
__ieee754_gamma(double x)
{
#ifdef OPENLIBM_ONLY_THREAD_SAFE
int signgam;
#endif
return __ieee754_gamma_r(x,&signgam);
}

View file

@ -1,33 +0,0 @@
/* @(#)e_gamma_r.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
#include "cdefs-compat.h"
//__FBSDID("$FreeBSD: src/lib/msun/src/e_gamma_r.c,v 1.8 2008/02/22 02:30:34 das Exp $");
/* __ieee754_gamma_r(x, signgamp)
* Reentrant version of the logarithm of the Gamma function
* with user provide pointer for the sign of Gamma(x).
*
* Method: See __ieee754_lgamma_r
*/
#include <openlibm_math.h>
#include "math_private.h"
DLLEXPORT double
__ieee754_gamma_r(double x, int *signgamp)
{
return __ieee754_lgamma_r(x,signgamp);
}

View file

@ -1,37 +0,0 @@
/* e_gammaf.c -- float version of e_gamma.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "cdefs-compat.h"
//__FBSDID("$FreeBSD: src/lib/msun/src/e_gammaf.c,v 1.7 2008/02/22 02:30:35 das Exp $");
/* __ieee754_gammaf(x)
* Return the logarithm of the Gamma function of x.
*
* Method: call __ieee754_gammaf_r
*/
#include <openlibm_math.h>
#include "math_private.h"
DLLEXPORT float
__ieee754_gammaf(float x)
{
#ifdef OPENLIBM_ONLY_THREAD_SAFE
int signgam;
#endif
return __ieee754_gammaf_r(x,&signgam);
}

View file

@ -1,34 +0,0 @@
/* e_gammaf_r.c -- float version of e_gamma_r.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "cdefs-compat.h"
//__FBSDID("$FreeBSD: src/lib/msun/src/e_gammaf_r.c,v 1.8 2008/02/22 02:30:35 das Exp $");
/* __ieee754_gammaf_r(x, signgamp)
* Reentrant version of the logarithm of the Gamma function
* with user provide pointer for the sign of Gamma(x).
*
* Method: See __ieee754_lgammaf_r
*/
#include <openlibm_math.h>
#include "math_private.h"
DLLEXPORT float
__ieee754_gammaf_r(float x, int *signgamp)
{
return __ieee754_lgammaf_r(x,signgamp);
}

View file

@ -1,344 +0,0 @@
/* e_j0f.c -- float version of e_j0.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include <assert.h>
#include "cdefs-compat.h"
//__FBSDID("$FreeBSD: src/lib/msun/src/e_j0f.c,v 1.8 2008/02/22 02:30:35 das Exp $");
#include <openlibm_math.h>
#include "math_private.h"
static float pzerof(float), qzerof(float);
static const float
huge = 1e30,
one = 1.0,
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
tpi = 6.3661974669e-01, /* 0x3f22f983 */
/* R0/S0 on [0, 2.00] */
R02 = 1.5625000000e-02, /* 0x3c800000 */
R03 = -1.8997929874e-04, /* 0xb947352e */
R04 = 1.8295404516e-06, /* 0x35f58e88 */
R05 = -4.6183270541e-09, /* 0xb19eaf3c */
S01 = 1.5619102865e-02, /* 0x3c7fe744 */
S02 = 1.1692678527e-04, /* 0x38f53697 */
S03 = 5.1354652442e-07, /* 0x3509daa6 */
S04 = 1.1661400734e-09; /* 0x30a045e8 */
static const float zero = 0.0;
DLLEXPORT float
__ieee754_j0f(float x)
{
float z, s,c,ss,cc,r,u,v;
int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x7f800000) return one/(x*x);
x = fabsf(x);
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = sinf(x);
c = cosf(x);
ss = s-c;
cc = s+c;
if(ix<0x7f000000) { /* make sure x+x not overflow */
z = -cosf(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(x);
else {
u = pzerof(x); v = qzerof(x);
z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
}
return z;
}
if(ix<0x39000000) { /* |x| < 2**-13 */
if(huge+x>one) { /* raise inexact if x != 0 */
if(ix<0x32000000) return one; /* |x|<2**-27 */
else return one - (float)0.25*x*x;
}
}
z = x*x;
r = z*(R02+z*(R03+z*(R04+z*R05)));
s = one+z*(S01+z*(S02+z*(S03+z*S04)));
if(ix < 0x3F800000) { /* |x| < 1.00 */
return one + z*((float)-0.25+(r/s));
} else {
u = (float)0.5*x;
return((one+u)*(one-u)+z*(r/s));
}
}
static const float
u00 = -7.3804296553e-02, /* 0xbd9726b5 */
u01 = 1.7666645348e-01, /* 0x3e34e80d */
u02 = -1.3818567619e-02, /* 0xbc626746 */
u03 = 3.4745343146e-04, /* 0x39b62a69 */
u04 = -3.8140706238e-06, /* 0xb67ff53c */
u05 = 1.9559013964e-08, /* 0x32a802ba */
u06 = -3.9820518410e-11, /* 0xae2f21eb */
v01 = 1.2730483897e-02, /* 0x3c509385 */
v02 = 7.6006865129e-05, /* 0x389f65e0 */
v03 = 2.5915085189e-07, /* 0x348b216c */
v04 = 4.4111031494e-10; /* 0x2ff280c2 */
DLLEXPORT float
__ieee754_y0f(float x)
{
float z, s,c,ss,cc,u,v;
int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
if(ix>=0x7f800000) return one/(x+x*x);
if(ix==0) return -one/zero;
if(hx<0) return zero/zero;
if(ix >= 0x40000000) { /* |x| >= 2.0 */
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
* where x0 = x-pi/4
* Better formula:
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
* = 1/sqrt(2) * (sin(x) + cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
s = sinf(x);
c = cosf(x);
ss = s-c;
cc = s+c;
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix<0x7f000000) { /* make sure x+x not overflow */
z = -cosf(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
if(ix>0x80000000) z = (invsqrtpi*ss)/sqrtf(x);
else {
u = pzerof(x); v = qzerof(x);
z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
}
return z;
}
if(ix<=0x32000000) { /* x < 2**-27 */
return(u00 + tpi*__ieee754_logf(x));
}
z = x*x;
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
v = one+z*(v01+z*(v02+z*(v03+z*v04)));
return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
}
/* The asymptotic expansions of pzero is
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
* For x >= 2, We approximate pzero by
* pzero(x) = 1 + (R/S)
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
* S = 1 + pS0*s^2 + ... + pS4*s^10
* and
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
*/
static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
0.0000000000e+00, /* 0x00000000 */
-7.0312500000e-02, /* 0xbd900000 */
-8.0816707611e+00, /* 0xc1014e86 */
-2.5706311035e+02, /* 0xc3808814 */
-2.4852163086e+03, /* 0xc51b5376 */
-5.2530439453e+03, /* 0xc5a4285a */
};
static const float pS8[5] = {
1.1653436279e+02, /* 0x42e91198 */
3.8337448730e+03, /* 0x456f9beb */
4.0597855469e+04, /* 0x471e95db */
1.1675296875e+05, /* 0x47e4087c */
4.7627726562e+04, /* 0x473a0bba */
};
static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-1.1412546255e-11, /* 0xad48c58a */
-7.0312492549e-02, /* 0xbd8fffff */
-4.1596107483e+00, /* 0xc0851b88 */
-6.7674766541e+01, /* 0xc287597b */
-3.3123129272e+02, /* 0xc3a59d9b */
-3.4643338013e+02, /* 0xc3ad3779 */
};
static const float pS5[5] = {
6.0753936768e+01, /* 0x42730408 */
1.0512523193e+03, /* 0x44836813 */
5.9789707031e+03, /* 0x45bad7c4 */
9.6254453125e+03, /* 0x461665c8 */
2.4060581055e+03, /* 0x451660ee */
};
static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-2.5470459075e-09, /* 0xb12f081b */
-7.0311963558e-02, /* 0xbd8fffb8 */
-2.4090321064e+00, /* 0xc01a2d95 */
-2.1965976715e+01, /* 0xc1afba52 */
-5.8079170227e+01, /* 0xc2685112 */
-3.1447946548e+01, /* 0xc1fb9565 */
};
static const float pS3[5] = {
3.5856033325e+01, /* 0x420f6c94 */
3.6151397705e+02, /* 0x43b4c1ca */
1.1936077881e+03, /* 0x44953373 */
1.1279968262e+03, /* 0x448cffe6 */
1.7358093262e+02, /* 0x432d94b8 */
};
static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-8.8753431271e-08, /* 0xb3be98b7 */
-7.0303097367e-02, /* 0xbd8ffb12 */
-1.4507384300e+00, /* 0xbfb9b1cc */
-7.6356959343e+00, /* 0xc0f4579f */
-1.1193166733e+01, /* 0xc1331736 */
-3.2336456776e+00, /* 0xc04ef40d */
};
static const float pS2[5] = {
2.2220300674e+01, /* 0x41b1c32d */
1.3620678711e+02, /* 0x430834f0 */
2.7047027588e+02, /* 0x43873c32 */
1.5387539673e+02, /* 0x4319e01a */
1.4657617569e+01, /* 0x416a859a */
};
/* Note: This function is only called for ix>=0x40000000 (see above) */
static float pzerof(float x)
{
const float *p,*q;
float z,r,s;
int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
assert(ix>=0x40000000 && ix<=0x48000000);
if(ix>=0x41000000) {p = pR8; q= pS8;}
else if(ix>=0x40f71c58){p = pR5; q= pS5;}
else if(ix>=0x4036db68){p = pR3; q= pS3;}
else {p = pR2; q= pS2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}
/* For x >= 8, the asymptotic expansions of qzero is
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
* We approximate pzero by
* qzero(x) = s*(-1.25 + (R/S))
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
* S = 1 + qS0*s^2 + ... + qS5*s^12
* and
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
*/
static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
0.0000000000e+00, /* 0x00000000 */
7.3242187500e-02, /* 0x3d960000 */
1.1768206596e+01, /* 0x413c4a93 */
5.5767340088e+02, /* 0x440b6b19 */
8.8591972656e+03, /* 0x460a6cca */
3.7014625000e+04, /* 0x471096a0 */
};
static const float qS8[6] = {
1.6377603149e+02, /* 0x4323c6aa */
8.0983447266e+03, /* 0x45fd12c2 */
1.4253829688e+05, /* 0x480b3293 */
8.0330925000e+05, /* 0x49441ed4 */
8.4050156250e+05, /* 0x494d3359 */
-3.4389928125e+05, /* 0xc8a7eb69 */
};
static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
1.8408595828e-11, /* 0x2da1ec79 */
7.3242180049e-02, /* 0x3d95ffff */
5.8356351852e+00, /* 0x40babd86 */
1.3511157227e+02, /* 0x43071c90 */
1.0272437744e+03, /* 0x448067cd */
1.9899779053e+03, /* 0x44f8bf4b */
};
static const float qS5[6] = {
8.2776611328e+01, /* 0x42a58da0 */
2.0778142090e+03, /* 0x4501dd07 */
1.8847289062e+04, /* 0x46933e94 */
5.6751113281e+04, /* 0x475daf1d */
3.5976753906e+04, /* 0x470c88c1 */
-5.3543427734e+03, /* 0xc5a752be */
};
static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
4.3774099900e-09, /* 0x3196681b */
7.3241114616e-02, /* 0x3d95ff70 */
3.3442313671e+00, /* 0x405607e3 */
4.2621845245e+01, /* 0x422a7cc5 */
1.7080809021e+02, /* 0x432acedf */
1.6673394775e+02, /* 0x4326bbe4 */
};
static const float qS3[6] = {
4.8758872986e+01, /* 0x42430916 */
7.0968920898e+02, /* 0x44316c1c */
3.7041481934e+03, /* 0x4567825f */
6.4604252930e+03, /* 0x45c9e367 */
2.5163337402e+03, /* 0x451d4557 */
-1.4924745178e+02, /* 0xc3153f59 */
};
static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
1.5044444979e-07, /* 0x342189db */
7.3223426938e-02, /* 0x3d95f62a */
1.9981917143e+00, /* 0x3fffc4bf */
1.4495602608e+01, /* 0x4167edfd */
3.1666231155e+01, /* 0x41fd5471 */
1.6252708435e+01, /* 0x4182058c */
};
static const float qS2[6] = {
3.0365585327e+01, /* 0x41f2ecb8 */
2.6934811401e+02, /* 0x4386ac8f */
8.4478375244e+02, /* 0x44533229 */
8.8293585205e+02, /* 0x445cbbe5 */
2.1266638184e+02, /* 0x4354aa98 */
-5.3109550476e+00, /* 0xc0a9f358 */
};
/* Note: This function is only called for ix>=0x40000000 (see above) */
static float qzerof(float x)
{
const float *p,*q;
float s,r,z;
int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
assert(ix>=0x40000000 && ix<=0x48000000);
if(ix>=0x41000000) {p = qR8; q= qS8;}
else if(ix>=0x40f71c58){p = qR5; q= qS5;}
else if(ix>=0x4036db68){p = qR3; q= qS3;}
else {p = qR2; q= qS2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
return (-(float).125 + r/s)/x;
}

View file

@ -1,340 +0,0 @@
/* e_j1f.c -- float version of e_j1.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include <assert.h>
#include "cdefs-compat.h"
//__FBSDID("$FreeBSD: src/lib/msun/src/e_j1f.c,v 1.8 2008/02/22 02:30:35 das Exp $");
#include <openlibm_math.h>
#include "math_private.h"
static float ponef(float), qonef(float);
static const float
huge = 1e30,
one = 1.0,
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
tpi = 6.3661974669e-01, /* 0x3f22f983 */
/* R0/S0 on [0,2] */
r00 = -6.2500000000e-02, /* 0xbd800000 */
r01 = 1.4070566976e-03, /* 0x3ab86cfd */
r02 = -1.5995563444e-05, /* 0xb7862e36 */
r03 = 4.9672799207e-08, /* 0x335557d2 */
s01 = 1.9153760746e-02, /* 0x3c9ce859 */
s02 = 1.8594678841e-04, /* 0x3942fab6 */
s03 = 1.1771846857e-06, /* 0x359dffc2 */
s04 = 5.0463624390e-09, /* 0x31ad6446 */
s05 = 1.2354227016e-11; /* 0x2d59567e */
static const float zero = 0.0;
DLLEXPORT float
__ieee754_j1f(float x)
{
float z, s,c,ss,cc,r,u,v,y;
int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x7f800000) return one/x;
y = fabsf(x);
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = sinf(y);
c = cosf(y);
ss = -s-c;
cc = s-c;
if(ix<0x7f000000) { /* make sure y+y not overflow */
z = cosf(y+y);
if ((s*c)>zero) cc = z/ss;
else ss = z/cc;
}
/*
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
*/
if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
else {
u = ponef(y); v = qonef(y);
z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
}
if(hx<0) return -z;
else return z;
}
if(ix<0x32000000) { /* |x|<2**-27 */
if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
}
z = x*x;
r = z*(r00+z*(r01+z*(r02+z*r03)));
s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
r *= x;
return(x*(float)0.5+r/s);
}
static const float U0[5] = {
-1.9605709612e-01, /* 0xbe48c331 */
5.0443872809e-02, /* 0x3d4e9e3c */
-1.9125689287e-03, /* 0xbafaaf2a */
2.3525259166e-05, /* 0x37c5581c */
-9.1909917899e-08, /* 0xb3c56003 */
};
static const float V0[5] = {
1.9916731864e-02, /* 0x3ca3286a */
2.0255257550e-04, /* 0x3954644b */
1.3560879779e-06, /* 0x35b602d4 */
6.2274145840e-09, /* 0x31d5f8eb */
1.6655924903e-11, /* 0x2d9281cf */
};
DLLEXPORT float
__ieee754_y1f(float x)
{
float z, s,c,ss,cc,u,v;
int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
if(ix>=0x7f800000) return one/(x+x*x);
if(ix==0) return -one/zero;
if(hx<0) return zero/zero;
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = sinf(x);
c = cosf(x);
ss = -s-c;
cc = s-c;
if(ix<0x7f000000) { /* make sure x+x not overflow */
z = cosf(x+x);
if ((s*c)>zero) cc = z/ss;
else ss = z/cc;
}
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
* where x0 = x-3pi/4
* Better formula:
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (cos(x) + sin(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
else {
u = ponef(x); v = qonef(x);
z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
}
return z;
}
if(ix<=0x24800000) { /* x < 2**-54 */
return(-tpi/x);
}
z = x*x;
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
}
/* For x >= 8, the asymptotic expansions of pone is
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
* We approximate pone by
* pone(x) = 1 + (R/S)
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
* S = 1 + ps0*s^2 + ... + ps4*s^10
* and
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
*/
static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
0.0000000000e+00, /* 0x00000000 */
1.1718750000e-01, /* 0x3df00000 */
1.3239480972e+01, /* 0x4153d4ea */
4.1205184937e+02, /* 0x43ce06a3 */
3.8747453613e+03, /* 0x45722bed */
7.9144794922e+03, /* 0x45f753d6 */
};
static const float ps8[5] = {
1.1420736694e+02, /* 0x42e46a2c */
3.6509309082e+03, /* 0x45642ee5 */
3.6956207031e+04, /* 0x47105c35 */
9.7602796875e+04, /* 0x47bea166 */
3.0804271484e+04, /* 0x46f0a88b */
};
static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
1.3199052094e-11, /* 0x2d68333f */
1.1718749255e-01, /* 0x3defffff */
6.8027510643e+00, /* 0x40d9b023 */
1.0830818176e+02, /* 0x42d89dca */
5.1763616943e+02, /* 0x440168b7 */
5.2871520996e+02, /* 0x44042dc6 */
};
static const float ps5[5] = {
5.9280597687e+01, /* 0x426d1f55 */
9.9140142822e+02, /* 0x4477d9b1 */
5.3532670898e+03, /* 0x45a74a23 */
7.8446904297e+03, /* 0x45f52586 */
1.5040468750e+03, /* 0x44bc0180 */
};
static const float pr3[6] = {
3.0250391081e-09, /* 0x314fe10d */
1.1718686670e-01, /* 0x3defffab */
3.9329774380e+00, /* 0x407bb5e7 */
3.5119403839e+01, /* 0x420c7a45 */
9.1055007935e+01, /* 0x42b61c2a */
4.8559066772e+01, /* 0x42423c7c */
};
static const float ps3[5] = {
3.4791309357e+01, /* 0x420b2a4d */
3.3676245117e+02, /* 0x43a86198 */
1.0468714600e+03, /* 0x4482dbe3 */
8.9081134033e+02, /* 0x445eb3ed */
1.0378793335e+02, /* 0x42cf936c */
};
static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
1.0771083225e-07, /* 0x33e74ea8 */
1.1717621982e-01, /* 0x3deffa16 */
2.3685150146e+00, /* 0x401795c0 */
1.2242610931e+01, /* 0x4143e1bc */
1.7693971634e+01, /* 0x418d8d41 */
5.0735230446e+00, /* 0x40a25a4d */
};
static const float ps2[5] = {
2.1436485291e+01, /* 0x41ab7dec */
1.2529022980e+02, /* 0x42fa9499 */
2.3227647400e+02, /* 0x436846c7 */
1.1767937469e+02, /* 0x42eb5bd7 */
8.3646392822e+00, /* 0x4105d590 */
};
/* Note: This function is only called for ix>=0x40000000 (see above) */
static float ponef(float x)
{
const float *p,*q;
float z,r,s;
int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
assert(ix>=0x40000000 && ix<=0x48000000);
if(ix>=0x41000000) {p = pr8; q= ps8;}
else if(ix>=0x40f71c58){p = pr5; q= ps5;}
else if(ix>=0x4036db68){p = pr3; q= ps3;}
else {p = pr2; q= ps2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}
/* For x >= 8, the asymptotic expansions of qone is
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
* We approximate pone by
* qone(x) = s*(0.375 + (R/S))
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
* S = 1 + qs1*s^2 + ... + qs6*s^12
* and
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
*/
static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
0.0000000000e+00, /* 0x00000000 */
-1.0253906250e-01, /* 0xbdd20000 */
-1.6271753311e+01, /* 0xc1822c8d */
-7.5960174561e+02, /* 0xc43de683 */
-1.1849806641e+04, /* 0xc639273a */
-4.8438511719e+04, /* 0xc73d3683 */
};
static const float qs8[6] = {
1.6139537048e+02, /* 0x43216537 */
7.8253862305e+03, /* 0x45f48b17 */
1.3387534375e+05, /* 0x4802bcd6 */
7.1965775000e+05, /* 0x492fb29c */
6.6660125000e+05, /* 0x4922be94 */
-2.9449025000e+05, /* 0xc88fcb48 */
};
static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-2.0897993405e-11, /* 0xadb7d219 */
-1.0253904760e-01, /* 0xbdd1fffe */
-8.0564479828e+00, /* 0xc100e736 */
-1.8366960144e+02, /* 0xc337ab6b */
-1.3731937256e+03, /* 0xc4aba633 */
-2.6124443359e+03, /* 0xc523471c */
};
static const float qs5[6] = {
8.1276550293e+01, /* 0x42a28d98 */
1.9917987061e+03, /* 0x44f8f98f */
1.7468484375e+04, /* 0x468878f8 */
4.9851425781e+04, /* 0x4742bb6d */
2.7948074219e+04, /* 0x46da5826 */
-4.7191835938e+03, /* 0xc5937978 */
};
static const float qr3[6] = {
-5.0783124372e-09, /* 0xb1ae7d4f */
-1.0253783315e-01, /* 0xbdd1ff5b */
-4.6101160049e+00, /* 0xc0938612 */
-5.7847221375e+01, /* 0xc267638e */
-2.2824453735e+02, /* 0xc3643e9a */
-2.1921012878e+02, /* 0xc35b35cb */
};
static const float qs3[6] = {
4.7665153503e+01, /* 0x423ea91e */
6.7386511230e+02, /* 0x4428775e */
3.3801528320e+03, /* 0x45534272 */
5.5477290039e+03, /* 0x45ad5dd5 */
1.9031191406e+03, /* 0x44ede3d0 */
-1.3520118713e+02, /* 0xc3073381 */
};
static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-1.7838172539e-07, /* 0xb43f8932 */
-1.0251704603e-01, /* 0xbdd1f475 */
-2.7522056103e+00, /* 0xc0302423 */
-1.9663616180e+01, /* 0xc19d4f16 */
-4.2325313568e+01, /* 0xc2294d1f */
-2.1371921539e+01, /* 0xc1aaf9b2 */
};
static const float qs2[6] = {
2.9533363342e+01, /* 0x41ec4454 */
2.5298155212e+02, /* 0x437cfb47 */
7.5750280762e+02, /* 0x443d602e */
7.3939318848e+02, /* 0x4438d92a */
1.5594900513e+02, /* 0x431bf2f2 */
-4.9594988823e+00, /* 0xc09eb437 */
};
/* Note: This function is only called for ix>=0x40000000 (see above) */
static float qonef(float x)
{
const float *p,*q;
float s,r,z;
int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
assert(ix>=0x40000000 && ix<=0x48000000);
if(ix>=0x40200000) {p = qr8; q= qs8;}
else if(ix>=0x40f71c58){p = qr5; q= qs5;}
else if(ix>=0x4036db68){p = qr3; q= qs3;}
else {p = qr2; q= qs2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
return ((float).375 + r/s)/x;
}

View file

@ -1,200 +0,0 @@
/* e_jnf.c -- float version of e_jn.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "cdefs-compat.h"
//__FBSDID("$FreeBSD: src/lib/msun/src/e_jnf.c,v 1.11 2010/11/13 10:54:10 uqs Exp $");
#include <openlibm_math.h>
#include "math_private.h"
static const float
two = 2.0000000000e+00, /* 0x40000000 */
one = 1.0000000000e+00; /* 0x3F800000 */
static const float zero = 0.0000000000e+00;
DLLEXPORT float
__ieee754_jnf(int n, float x)
{
int32_t i,hx,ix, sgn;
float a, b, temp, di;
float z, w;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* if J(n,NaN) is NaN */
if(ix>0x7f800000) return x+x;
if(n<0){
n = -n;
x = -x;
hx ^= 0x80000000;
}
if(n==0) return(__ieee754_j0f(x));
if(n==1) return(__ieee754_j1f(x));
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
x = fabsf(x);
if(ix==0||ix>=0x7f800000) /* if x is 0 or inf */
b = zero;
else if((float)n<=x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
a = __ieee754_j0f(x);
b = __ieee754_j1f(x);
for(i=1;i<n;i++){
temp = b;
b = b*((float)(i+i)/x) - a; /* avoid underflow */
a = temp;
}
} else {
if(ix<0x30800000) { /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if(n>33) /* underflow */
b = zero;
else {
temp = x*(float)0.5; b = temp;
for (a=one,i=2;i<=n;i++) {
a *= (float)i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b/a;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
float t,v;
float q0,q1,h,tmp; int32_t k,m;
w = (n+n)/(float)x; h = (float)2.0/(float)x;
q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1;
while(q1<(float)1.0e9) {
k += 1; z += h;
tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
m = n+n;
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
a = t;
b = one;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
v = two/x;
tmp = tmp*__ieee754_logf(fabsf(v*tmp));
if(tmp<(float)8.8721679688e+01) {
for(i=n-1,di=(float)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
}
} else {
for(i=n-1,di=(float)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
/* scale b to avoid spurious overflow */
if(b>(float)1e10) {
a /= b;
t /= b;
b = one;
}
}
}
z = __ieee754_j0f(x);
w = __ieee754_j1f(x);
if (fabsf(z) >= fabsf(w))
b = (t*z/b);
else
b = (t*w/a);
}
}
if(sgn==1) return -b; else return b;
}
DLLEXPORT float
__ieee754_ynf(int n, float x)
{
int32_t i,hx,ix,ib;
int32_t sign;
float a, b, temp;
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* if Y(n,NaN) is NaN */
if(ix>0x7f800000) return x+x;
if(ix==0) return -one/zero;
if(hx<0) return zero/zero;
sign = 1;
if(n<0){
n = -n;
sign = 1 - ((n&1)<<1);
}
if(n==0) return(__ieee754_y0f(x));
if(n==1) return(sign*__ieee754_y1f(x));
if(ix==0x7f800000) return zero;
a = __ieee754_y0f(x);
b = __ieee754_y1f(x);
/* quit if b is -inf */
GET_FLOAT_WORD(ib,b);
for(i=1;i<n&&ib!=0xff800000;i++){
temp = b;
b = ((float)(i+i)/x)*b - a;
GET_FLOAT_WORD(ib,b);
a = temp;
}
if(sign>0) return b; else return -b;
}

View file

@ -1,48 +0,0 @@
/* @(#)e_scalb.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "cdefs-compat.h"
//__FBSDID("$FreeBSD: src/lib/msun/src/e_scalb.c,v 1.13 2008/02/22 02:30:35 das Exp $");
/*
* __ieee754_scalb(x, fn) is provide for
* passing various standard test suite. One
* should use scalbn() instead.
*/
#include <openlibm_math.h>
#include "math_private.h"
#ifdef _SCALB_INT
DLLEXPORT double
__ieee754_scalb(double x, int fn)
#else
DLLEXPORT double
__ieee754_scalb(double x, double fn)
#endif
{
#ifdef _SCALB_INT
return scalbn(x,fn);
#else
if (isnan(x)||isnan(fn)) return x*fn;
if (!isfinite(fn)) {
if(fn>0.0) return x*fn;
else return x/(-fn);
}
if (rint(fn)!=fn) return (fn-fn)/(fn-fn);
if ( fn > 65000.0) return scalbn(x, 65000);
if (-fn > 65000.0) return scalbn(x,-65000);
return scalbn(x,(int)fn);
#endif
}

View file

@ -1,44 +0,0 @@
/* e_scalbf.c -- float version of e_scalb.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "cdefs-compat.h"
//__FBSDID("$FreeBSD: src/lib/msun/src/e_scalbf.c,v 1.13 2008/02/22 02:30:35 das Exp $");
#include <openlibm_math.h>
#include "math_private.h"
#ifdef _SCALB_INT
DLLEXPORT float
__ieee754_scalbf(float x, int fn)
#else
DLLEXPORT float
__ieee754_scalbf(float x, float fn)
#endif
{
#ifdef _SCALB_INT
return scalbnf(x,fn);
#else
if (isnan(x)||isnan(fn)) return x*fn;
if (!isfinite(fn)) {
if(fn>(float)0.0) return x*fn;
else return x/(-fn);
}
if (rintf(fn)!=fn) return (fn-fn)/(fn-fn);
if ( fn > (float)65000.0) return scalbnf(x, 65000);
if (-fn > (float)65000.0) return scalbnf(x,-65000);
return scalbnf(x,(int)fn);
#endif
}

View file

@ -280,9 +280,7 @@ irint(double x)
#define __ieee754_fmod fmod #define __ieee754_fmod fmod
#define __ieee754_pow pow #define __ieee754_pow pow
#define __ieee754_lgamma lgamma #define __ieee754_lgamma lgamma
#define __ieee754_gamma gamma
#define __ieee754_lgamma_r lgamma_r #define __ieee754_lgamma_r lgamma_r
#define __ieee754_gamma_r gamma_r
#define __ieee754_log10 log10 #define __ieee754_log10 log10
#define __ieee754_sinh sinh #define __ieee754_sinh sinh
#define __ieee754_hypot hypot #define __ieee754_hypot hypot
@ -293,7 +291,6 @@ irint(double x)
#define __ieee754_jn jn #define __ieee754_jn jn
#define __ieee754_yn yn #define __ieee754_yn yn
#define __ieee754_remainder remainder #define __ieee754_remainder remainder
#define __ieee754_scalb scalb
#define __ieee754_sqrtf sqrtf #define __ieee754_sqrtf sqrtf
#define __ieee754_acosf acosf #define __ieee754_acosf acosf
#define __ieee754_acoshf acoshf #define __ieee754_acoshf acoshf
@ -306,21 +303,12 @@ irint(double x)
#define __ieee754_fmodf fmodf #define __ieee754_fmodf fmodf
#define __ieee754_powf powf #define __ieee754_powf powf
#define __ieee754_lgammaf lgammaf #define __ieee754_lgammaf lgammaf
#define __ieee754_gammaf gammaf
#define __ieee754_lgammaf_r lgammaf_r #define __ieee754_lgammaf_r lgammaf_r
#define __ieee754_gammaf_r gammaf_r
#define __ieee754_log10f log10f #define __ieee754_log10f log10f
#define __ieee754_log2f log2f #define __ieee754_log2f log2f
#define __ieee754_sinhf sinhf #define __ieee754_sinhf sinhf
#define __ieee754_hypotf hypotf #define __ieee754_hypotf hypotf
#define __ieee754_j0f j0f
#define __ieee754_j1f j1f
#define __ieee754_y0f y0f
#define __ieee754_y1f y1f
#define __ieee754_jnf jnf
#define __ieee754_ynf ynf
#define __ieee754_remainderf remainderf #define __ieee754_remainderf remainderf
#define __ieee754_scalbf scalbf
/* fdlibm kernel function */ /* fdlibm kernel function */
int __kernel_rem_pio2(double*,double*,int,int,int); int __kernel_rem_pio2(double*,double*,int,int,int);

View file

@ -1,31 +0,0 @@
/* @(#)s_finite.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "cdefs-compat.h"
//__FBSDID("$FreeBSD: src/lib/msun/src/s_finite.c,v 1.9 2008/02/22 02:30:35 das Exp $");
/*
* finite(x) returns 1 is x is finite, else 0;
* no branching!
*/
#include <openlibm_math.h>
#include "math_private.h"
DLLEXPORT int
finite(double x)
{
int32_t hx;
GET_HIGH_WORD(hx,x);
return (int)((u_int32_t)((hx&0x7fffffff)-0x7ff00000)>>31);
}

View file

@ -1,34 +0,0 @@
/* s_finitef.c -- float version of s_finite.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "cdefs-compat.h"
//__FBSDID("$FreeBSD: src/lib/msun/src/s_finitef.c,v 1.7 2008/02/22 02:30:35 das Exp $");
/*
* finitef(x) returns 1 is x is finite, else 0;
* no branching!
*/
#include <openlibm_math.h>
#include "math_private.h"
DLLEXPORT int
finitef(float x)
{
int32_t ix;
GET_FLOAT_WORD(ix,x);
return (int)((u_int32_t)((ix&0x7fffffff)-0x7f800000)>>31);
}

View file

@ -1,30 +0,0 @@
/* @(#)s_signif.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "cdefs-compat.h"
//__FBSDID("$FreeBSD: src/lib/msun/src/s_significand.c,v 1.10 2008/02/22 02:30:35 das Exp $");
/*
* significand(x) computes just
* scalb(x, (double) -ilogb(x)),
* for exercising the fraction-part(F) IEEE 754-1985 test vector.
*/
#include <openlibm_math.h>
#include "math_private.h"
DLLEXPORT double
significand(double x)
{
return __ieee754_scalb(x,(double) -ilogb(x));
}

View file

@ -1,27 +0,0 @@
/* s_significandf.c -- float version of s_significand.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "cdefs-compat.h"
//__FBSDID("$FreeBSD: src/lib/msun/src/s_significandf.c,v 1.8 2008/02/22 02:30:36 das Exp $");
#include <openlibm_math.h>
#include "math_private.h"
DLLEXPORT float
significandf(float x)
{
return __ieee754_scalbf(x,(float) -ilogbf(x));
}

View file

@ -1,16 +0,0 @@
/*
* drem() wrapper for remainder().
*
* Written by J.T. Conklin, <jtc@wimsey.com>
* Placed into the Public Domain, 1994.
*/
#include <openlibm_math.h>
#include "math_private.h"
DLLEXPORT double
drem(x, y)
double x, y;
{
return remainder(x, y);
}

View file

@ -1,17 +0,0 @@
/*
* dremf() wrapper for remainderf().
*
* Written by J.T. Conklin, <jtc@wimsey.com>
* Placed into the Public Domain, 1994.
*/
/* $FreeBSD: src/lib/msun/src/w_dremf.c,v 1.3 2004/07/28 05:53:18 kan Exp $ */
#include <openlibm_math.h>
#include "math_private.h"
DLLEXPORT float
dremf(float x, float y)
{
return remainderf(x, y);
}

View file

@ -712,7 +712,6 @@ check_longlong (const char *test_name, long long int computed,
test_exceptions (test_name, exceptions); test_exceptions (test_name, exceptions);
noTests++; noTests++;
#define llabs(x) (x < 0 ? -x : x)
if (llabs (diff) <= max_ulp) if (llabs (diff) <= max_ulp)
ok = 1; ok = 1;
@ -2531,15 +2530,15 @@ fabs_test (void)
{ {
init_max_error (); init_max_error ();
check_float ("fabs (0) == 0", FUNC(fabs) (0), 0, 0, 0, 0); check_float ("fabs (0) == 0", FUNC(fabs) ((FLOAT)0.0), 0, 0, 0, 0);
check_float ("fabs (-0) == 0", FUNC(fabs) (minus_zero), 0, 0, 0, 0); check_float ("fabs (-0) == 0", FUNC(fabs) (minus_zero), 0, 0, 0, 0);
check_float ("fabs (inf) == inf", FUNC(fabs) (plus_infty), plus_infty, 0, 0, 0); check_float ("fabs (inf) == inf", FUNC(fabs) (plus_infty), plus_infty, 0, 0, 0);
check_float ("fabs (-inf) == inf", FUNC(fabs) (minus_infty), plus_infty, 0, 0, 0); check_float ("fabs (-inf) == inf", FUNC(fabs) (minus_infty), plus_infty, 0, 0, 0);
check_float ("fabs (NaN) == NaN", FUNC(fabs) (nan_value), nan_value, 0, 0, 0); check_float ("fabs (NaN) == NaN", FUNC(fabs) (nan_value), nan_value, 0, 0, 0);
check_float ("fabs (38.0) == 38.0", FUNC(fabs) (38.0), 38.0, 0, 0, 0); check_float ("fabs (38.0) == 38.0", FUNC(fabs) ((FLOAT)38.0), 38.0, 0, 0, 0);
check_float ("fabs (-e) == e", FUNC(fabs) (-M_El), M_El, 0, 0, 0); check_float ("fabs (-e) == e", FUNC(fabs) ((FLOAT)-M_El), M_El, 0, 0, 0);
print_max_error ("fabs", 0, 0); print_max_error ("fabs", 0, 0);
} }
@ -2918,6 +2917,7 @@ isnormal_test (void)
print_max_error ("isnormal", 0, 0); print_max_error ("isnormal", 0, 0);
} }
#ifdef TEST_DOUBLE
static void static void
j0_test (void) j0_test (void)
{ {
@ -3055,6 +3055,7 @@ jn_test (void)
print_max_error ("jn", DELTAjn, 0); print_max_error ("jn", DELTAjn, 0);
} }
#endif
static void static void
@ -3807,66 +3808,6 @@ round_test (void)
} }
static void
scalb_test (void)
{
init_max_error ();
check_float ("scalb (2.0, 0.5) == NaN plus invalid exception", FUNC(scalb) (2.0, 0.5), nan_value, 0, 0, INVALID_EXCEPTION);
check_float ("scalb (3.0, -2.5) == NaN plus invalid exception", FUNC(scalb) (3.0, -2.5), nan_value, 0, 0, INVALID_EXCEPTION);
check_float ("scalb (0, NaN) == NaN", FUNC(scalb) (0, nan_value), nan_value, 0, 0, 0);
check_float ("scalb (1, NaN) == NaN", FUNC(scalb) (1, nan_value), nan_value, 0, 0, 0);
check_float ("scalb (1, 0) == 1", FUNC(scalb) (1, 0), 1, 0, 0, 0);
check_float ("scalb (-1, 0) == -1", FUNC(scalb) (-1, 0), -1, 0, 0, 0);
check_float ("scalb (0, inf) == NaN plus invalid exception", FUNC(scalb) (0, plus_infty), nan_value, 0, 0, INVALID_EXCEPTION);
check_float ("scalb (-0, inf) == NaN plus invalid exception", FUNC(scalb) (minus_zero, plus_infty), nan_value, 0, 0, INVALID_EXCEPTION);
check_float ("scalb (0, 2) == 0", FUNC(scalb) (0, 2), 0, 0, 0, 0);
check_float ("scalb (-0, -4) == -0", FUNC(scalb) (minus_zero, -4), minus_zero, 0, 0, 0);
check_float ("scalb (0, 0) == 0", FUNC(scalb) (0, 0), 0, 0, 0, 0);
check_float ("scalb (-0, 0) == -0", FUNC(scalb) (minus_zero, 0), minus_zero, 0, 0, 0);
check_float ("scalb (0, -1) == 0", FUNC(scalb) (0, -1), 0, 0, 0, 0);
check_float ("scalb (-0, -10) == -0", FUNC(scalb) (minus_zero, -10), minus_zero, 0, 0, 0);
check_float ("scalb (0, -inf) == 0", FUNC(scalb) (0, minus_infty), 0, 0, 0, 0);
check_float ("scalb (-0, -inf) == -0", FUNC(scalb) (minus_zero, minus_infty), minus_zero, 0, 0, 0);
check_float ("scalb (inf, -1) == inf", FUNC(scalb) (plus_infty, -1), plus_infty, 0, 0, 0);
check_float ("scalb (-inf, -10) == -inf", FUNC(scalb) (minus_infty, -10), minus_infty, 0, 0, 0);
check_float ("scalb (inf, 0) == inf", FUNC(scalb) (plus_infty, 0), plus_infty, 0, 0, 0);
check_float ("scalb (-inf, 0) == -inf", FUNC(scalb) (minus_infty, 0), minus_infty, 0, 0, 0);
check_float ("scalb (inf, 2) == inf", FUNC(scalb) (plus_infty, 2), plus_infty, 0, 0, 0);
check_float ("scalb (-inf, 100) == -inf", FUNC(scalb) (minus_infty, 100), minus_infty, 0, 0, 0);
check_float ("scalb (0.1, -inf) == 0.0", FUNC(scalb) (0.1L, minus_infty), 0.0, 0, 0, 0);
check_float ("scalb (-0.1, -inf) == -0", FUNC(scalb) (-0.1L, minus_infty), minus_zero, 0, 0, 0);
check_float ("scalb (1, inf) == inf", FUNC(scalb) (1, plus_infty), plus_infty, 0, 0, 0);
check_float ("scalb (-1, inf) == -inf", FUNC(scalb) (-1, plus_infty), minus_infty, 0, 0, 0);
check_float ("scalb (inf, inf) == inf", FUNC(scalb) (plus_infty, plus_infty), plus_infty, 0, 0, 0);
check_float ("scalb (-inf, inf) == -inf", FUNC(scalb) (minus_infty, plus_infty), minus_infty, 0, 0, 0);
check_float ("scalb (inf, -inf) == NaN plus invalid exception", FUNC(scalb) (plus_infty, minus_infty), nan_value, 0, 0, INVALID_EXCEPTION);
check_float ("scalb (-inf, -inf) == NaN plus invalid exception", FUNC(scalb) (minus_infty, minus_infty), nan_value, 0, 0, INVALID_EXCEPTION);
check_float ("scalb (NaN, 1) == NaN", FUNC(scalb) (nan_value, 1), nan_value, 0, 0, 0);
check_float ("scalb (1, NaN) == NaN", FUNC(scalb) (1, nan_value), nan_value, 0, 0, 0);
check_float ("scalb (NaN, 0) == NaN", FUNC(scalb) (nan_value, 0), nan_value, 0, 0, 0);
check_float ("scalb (0, NaN) == NaN", FUNC(scalb) (0, nan_value), nan_value, 0, 0, 0);
check_float ("scalb (NaN, inf) == NaN", FUNC(scalb) (nan_value, plus_infty), nan_value, 0, 0, 0);
check_float ("scalb (inf, NaN) == NaN", FUNC(scalb) (plus_infty, nan_value), nan_value, 0, 0, 0);
check_float ("scalb (NaN, NaN) == NaN", FUNC(scalb) (nan_value, nan_value), nan_value, 0, 0, 0);
check_float ("scalb (0.8, 4) == 12.8", FUNC(scalb) (0.8L, 4), 12.8L, 0, 0, 0);
check_float ("scalb (-0.854375, 5) == -27.34", FUNC(scalb) (-0.854375L, 5), -27.34L, 0, 0, 0);
print_max_error ("scalb", 0, 0);
}
static void static void
scalbn_test (void) scalbn_test (void)
{ {
@ -4181,6 +4122,7 @@ trunc_test (void)
print_max_error ("trunc", 0, 0); print_max_error ("trunc", 0, 0);
} }
#ifdef TEST_DOUBLE
static void static void
y0_test (void) y0_test (void)
{ {
@ -4316,6 +4258,7 @@ yn_test (void)
print_max_error ("yn", DELTAyn, 0); print_max_error ("yn", DELTAyn, 0);
} }
#endif
@ -4518,7 +4461,6 @@ main (int argc, char **argv)
logb_test (); logb_test ();
modf_test (); modf_test ();
ilogb_test (); ilogb_test ();
scalb_test ();
scalbn_test (); scalbn_test ();
scalbln_test (); scalbln_test ();
@ -4595,6 +4537,7 @@ main (int argc, char **argv)
ctanh_test (); ctanh_test ();
#endif #endif
#ifdef TEST_DOUBLE
/* Bessel functions: */ /* Bessel functions: */
j0_test (); j0_test ();
j1_test (); j1_test ();
@ -4602,6 +4545,7 @@ main (int argc, char **argv)
y0_test (); y0_test ();
y1_test (); y1_test ();
yn_test (); yn_test ();
#endif
if (output_ulps) if (output_ulps)
fclose (ulps_file); fclose (ulps_file);