Remove amos and Faddeeva - they are now in openspecfun

This commit is contained in:
Viral B. Shah 2013-12-23 23:00:42 +05:30
parent 8d24a2416e
commit d28fae9774
47 changed files with 3 additions and 10074 deletions

View file

@ -1,3 +0,0 @@
/* The Faddeeva.cc file contains macros to let it compile as C code
(assuming C99 complex-number support), so just #include it. */
#include "Faddeeva.cc"

File diff suppressed because it is too large Load diff

View file

@ -1,68 +0,0 @@
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Available at: http://ab-initio.mit.edu/Faddeeva
Header file for Faddeeva.c; see Faddeeva.cc for more information. */
#ifndef FADDEEVA_H
#define FADDEEVA_H 1
// Require C99 complex-number support
#include <complex.h>
#ifdef __cplusplus
extern "C"
{
#endif /* __cplusplus */
// compute w(z) = exp(-z^2) erfc(-iz) [ Faddeeva / scaled complex error func ]
extern double complex Faddeeva_w(double complex z,double relerr);
extern double Faddeeva_w_im(double x); // special-case code for Im[w(x)] of real x
// Various functions that we can compute with the help of w(z)
// compute erfcx(z) = exp(z^2) erfc(z)
extern double complex Faddeeva_erfcx(double complex z, double relerr);
extern double Faddeeva_erfcx_re(double x); // special case for real x
// compute erf(z), the error function of complex arguments
extern double complex Faddeeva_erf(double complex z, double relerr);
extern double Faddeeva_erf_re(double x); // special case for real x
// compute erfi(z) = -i erf(iz), the imaginary error function
extern double complex Faddeeva_erfi(double complex z, double relerr);
extern double Faddeeva_erfi_re(double x); // special case for real x
// compute erfc(z) = 1 - erf(z), the complementary error function
extern double complex Faddeeva_erfc(double complex z, double relerr);
extern double Faddeeva_erfc_re(double x); // special case for real x
// compute Dawson(z) = sqrt(pi)/2 * exp(-z^2) * erfi(z)
extern double complex Faddeeva_Dawson(double complex z, double relerr);
extern double Faddeeva_Dawson_re(double x); // special case for real x
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif // FADDEEVA_H

View file

@ -1,3 +0,0 @@
# complex error functions from the Faddeeva package
# (http://ab-initio.mit.edu/Faddeeva)
$(CUR_SRCS) += Faddeeva.c

View file

@ -44,9 +44,6 @@ default: all
%.S.o: %.S
$(CC) $(SFLAGS) $(filter -m% -B% -I% -D%,$(CFLAGS_add)) -c $< -o $@
clean:
rm -fr *.o *.c.o *.S.o *~ test-double test-float test-double-system test-float-system *.dSYM
# OS-specific stuff
ifeq ($(ARCH),i386)
override ARCH := i387

View file

@ -28,6 +28,9 @@ libopenlibm.a: $(OBJS)
libopenlibm.$(SHLIB_EXT): $(OBJS)
$(FC) -shared $(OBJS) $(LDFLAGS) -o libopenlibm.$(SHLIB_EXT)
clean:
rm -fr {./,*}/*{.o,~}
distclean:
rm -f $(OBJS) *.a *.$(SHLIB_EXT)
$(MAKE) -C test clean

3
amos/.gitignore vendored
View file

@ -1,3 +0,0 @@
*.o
/libamos.dylib
/libamos.so

View file

@ -1,5 +0,0 @@
$(CUR_SRCS) += d1mach.f zabs.f zasyi.f zbesk.f zbknu.f zexp.f zmlt.f zshch.f zuni1.f zunk2.f \
dgamln.f zacai.f zbesh.f zbesy.f zbuni.f zkscl.f zrati.f zsqrt.f zuni2.f zuoik.f \
i1mach.f zacon.f zbesi.f zbinu.f zbunk.f zlog.f zs1s2.f zuchk.f zunik.f zwrsk.f \
xerror.f zairy.f zbesj.f zbiry.f zdiv.f zmlri.f zseri.f zunhj.f zunk1.f

View file

@ -1,97 +0,0 @@
*DECK D1MACH
DOUBLE PRECISION FUNCTION D1MACH(I)
C***BEGIN PROLOGUE D1MACH
C***DATE WRITTEN 750101 (YYMMDD)
C***REVISION DATE 890213 (YYMMDD)
C***CATEGORY NO. R1
C***KEYWORDS LIBRARY=SLATEC,TYPE=DOUBLE PRECISION(R1MACH-S D1MACH-D),
C MACHINE CONSTANTS
C***AUTHOR FOX, P. A., (BELL LABS)
C HALL, A. D., (BELL LABS)
C SCHRYER, N. L., (BELL LABS)
C***PURPOSE Returns double precision machine dependent constants
C***DESCRIPTION
C
C D1MACH can be used to obtain machine-dependent parameters
C for the local machine environment. It is a function
C subprogram with one (input) argument, and can be called
C as follows, for example
C
C D = D1MACH(I)
C
C where I=1,...,5. The (output) value of D above is
C determined by the (input) value of I. The results for
C various values of I are discussed below.
C
C D1MACH( 1) = B**(EMIN-1), the smallest positive magnitude.
C D1MACH( 2) = B**EMAX*(1 - B**(-T)), the largest magnitude.
C D1MACH( 3) = B**(-T), the smallest relative spacing.
C D1MACH( 4) = B**(1-T), the largest relative spacing.
C D1MACH( 5) = LOG10(B)
C
C Assume double precision numbers are represented in the T-digit,
C base-B form
C
C sign (B**E)*( (X(1)/B) + ... + (X(T)/B**T) )
C
C where 0 .LE. X(I) .LT. B for I=1,...,T, 0 .LT. X(1), and
C EMIN .LE. E .LE. EMAX.
C
C The values of B, T, EMIN and EMAX are provided in I1MACH as
C follows:
C I1MACH(10) = B, the base.
C I1MACH(14) = T, the number of base-B digits.
C I1MACH(15) = EMIN, the smallest exponent E.
C I1MACH(16) = EMAX, the largest exponent E.
C
C To alter this function for a particular environment,
C the desired set of DATA statements should be activated by
C removing the C from column 1. Also, the values of
C D1MACH(1) - D1MACH(4) should be checked for consistency
C with the local operating system.
C
C***REFERENCES FOX P.A., HALL A.D., SCHRYER N.L.,*FRAMEWORK FOR A
C PORTABLE LIBRARY*, ACM TRANSACTIONS ON MATHEMATICAL
C SOFTWARE, VOL. 4, NO. 2, JUNE 1978, PP. 177-188.
C***ROUTINES CALLED XERROR
C***END PROLOGUE D1MACH
C
INTEGER SMALL(4)
INTEGER LARGE(4)
INTEGER RIGHT(4)
INTEGER DIVER(4)
INTEGER LOG10(4)
C
DOUBLE PRECISION DMACH(5)
SAVE DMACH
C
C EQUIVALENCE (DMACH(1),SMALL(1))
C EQUIVALENCE (DMACH(2),LARGE(1))
C EQUIVALENCE (DMACH(3),RIGHT(1))
C EQUIVALENCE (DMACH(4),DIVER(1))
C EQUIVALENCE (DMACH(5),LOG10(1))
C
C MACHINE CONSTANTS FOR THE IBM PC
C ASSUMES THAT ALL ARITHMETIC IS DONE IN DOUBLE PRECISION
C ON 8088, I.E., NOT IN 80 BIT FORM FOR THE 8087.
C
DATA DMACH(1) / 2.23D-308 /
C DATA SMALL(1),SMALL(2) / 2002288515, 1050897 /
DATA DMACH(2) / 1.79D-308 /
C DATA LARGE(1),LARGE(2) / 1487780761, 2146426097 /
DATA DMACH(3) / 1.11D-16 /
C DATA RIGHT(1),RIGHT(2) / -1209488034, 1017118298 /
DATA DMACH(4) / 2.22D-16 /
C DATA DIVER(1),DIVER(2) / -1209488034, 1018166874 /
DATA DMACH(5) / 0.3010299956639812 /
C DATA LOG10(1),LOG10(2) / 1352628735, 1070810131 /
C
C
C***FIRST EXECUTABLE STATEMENT D1MACH
IF (I .LT. 1 .OR. I .GT. 5)
1 CALL XERROR ('D1MACH -- I OUT OF BOUNDS', 25, 1, 2)
C
D1MACH = DMACH(I)
RETURN
C
END

View file

@ -1,189 +0,0 @@
DOUBLE PRECISION FUNCTION DGAMLN(Z,IERR)
C***BEGIN PROLOGUE DGAMLN
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 830501 (YYMMDD)
C***CATEGORY NO. B5F
C***KEYWORDS GAMMA FUNCTION,LOGARITHM OF GAMMA FUNCTION
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE THE LOGARITHM OF THE GAMMA FUNCTION
C***DESCRIPTION
C
C **** A DOUBLE PRECISION ROUTINE ****
C DGAMLN COMPUTES THE NATURAL LOG OF THE GAMMA FUNCTION FOR
C Z.GT.0. THE ASYMPTOTIC EXPANSION IS USED TO GENERATE VALUES
C GREATER THAN ZMIN WHICH ARE ADJUSTED BY THE RECURSION
C G(Z+1)=Z*G(Z) FOR Z.LE.ZMIN. THE FUNCTION WAS MADE AS
C PORTABLE AS POSSIBLE BY COMPUTIMG ZMIN FROM THE NUMBER OF BASE
C 10 DIGITS IN A WORD, RLN=AMAX1(-ALOG10(R1MACH(4)),0.5E-18)
C LIMITED TO 18 DIGITS OF (RELATIVE) ACCURACY.
C
C SINCE INTEGER ARGUMENTS ARE COMMON, A TABLE LOOK UP ON 100
C VALUES IS USED FOR SPEED OF EXECUTION.
C
C DESCRIPTION OF ARGUMENTS
C
C INPUT Z IS D0UBLE PRECISION
C Z - ARGUMENT, Z.GT.0.0D0
C
C OUTPUT DGAMLN IS DOUBLE PRECISION
C DGAMLN - NATURAL LOG OF THE GAMMA FUNCTION AT Z.NE.0.0D0
C IERR - ERROR FLAG
C IERR=0, NORMAL RETURN, COMPUTATION COMPLETED
C IERR=1, Z.LE.0.0D0, NO COMPUTATION
C
C
C***REFERENCES COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
C***ROUTINES CALLED I1MACH,D1MACH
C***END PROLOGUE DGAMLN
DOUBLE PRECISION CF, CON, FLN, FZ, GLN, RLN, S, TLG, TRM, TST,
* T1, WDTOL, Z, ZDMY, ZINC, ZM, ZMIN, ZP, ZSQ, D1MACH
INTEGER I, IERR, I1M, K, MZ, NZ, I1MACH
DIMENSION CF(22), GLN(100)
C LNGAMMA(N), N=1,100
DATA GLN(1), GLN(2), GLN(3), GLN(4), GLN(5), GLN(6), GLN(7),
1 GLN(8), GLN(9), GLN(10), GLN(11), GLN(12), GLN(13), GLN(14),
2 GLN(15), GLN(16), GLN(17), GLN(18), GLN(19), GLN(20),
3 GLN(21), GLN(22)/
4 0.00000000000000000D+00, 0.00000000000000000D+00,
5 6.93147180559945309D-01, 1.79175946922805500D+00,
6 3.17805383034794562D+00, 4.78749174278204599D+00,
7 6.57925121201010100D+00, 8.52516136106541430D+00,
8 1.06046029027452502D+01, 1.28018274800814696D+01,
9 1.51044125730755153D+01, 1.75023078458738858D+01,
A 1.99872144956618861D+01, 2.25521638531234229D+01,
B 2.51912211827386815D+01, 2.78992713838408916D+01,
C 3.06718601060806728D+01, 3.35050734501368889D+01,
D 3.63954452080330536D+01, 3.93398841871994940D+01,
E 4.23356164607534850D+01, 4.53801388984769080D+01/
DATA GLN(23), GLN(24), GLN(25), GLN(26), GLN(27), GLN(28),
1 GLN(29), GLN(30), GLN(31), GLN(32), GLN(33), GLN(34),
2 GLN(35), GLN(36), GLN(37), GLN(38), GLN(39), GLN(40),
3 GLN(41), GLN(42), GLN(43), GLN(44)/
4 4.84711813518352239D+01, 5.16066755677643736D+01,
5 5.47847293981123192D+01, 5.80036052229805199D+01,
6 6.12617017610020020D+01, 6.45575386270063311D+01,
7 6.78897431371815350D+01, 7.12570389671680090D+01,
8 7.46582363488301644D+01, 7.80922235533153106D+01,
9 8.15579594561150372D+01, 8.50544670175815174D+01,
A 8.85808275421976788D+01, 9.21361756036870925D+01,
B 9.57196945421432025D+01, 9.93306124547874269D+01,
C 1.02968198614513813D+02, 1.06631760260643459D+02,
D 1.10320639714757395D+02, 1.14034211781461703D+02,
E 1.17771881399745072D+02, 1.21533081515438634D+02/
DATA GLN(45), GLN(46), GLN(47), GLN(48), GLN(49), GLN(50),
1 GLN(51), GLN(52), GLN(53), GLN(54), GLN(55), GLN(56),
2 GLN(57), GLN(58), GLN(59), GLN(60), GLN(61), GLN(62),
3 GLN(63), GLN(64), GLN(65), GLN(66)/
4 1.25317271149356895D+02, 1.29123933639127215D+02,
5 1.32952575035616310D+02, 1.36802722637326368D+02,
6 1.40673923648234259D+02, 1.44565743946344886D+02,
7 1.48477766951773032D+02, 1.52409592584497358D+02,
8 1.56360836303078785D+02, 1.60331128216630907D+02,
9 1.64320112263195181D+02, 1.68327445448427652D+02,
A 1.72352797139162802D+02, 1.76395848406997352D+02,
B 1.80456291417543771D+02, 1.84533828861449491D+02,
C 1.88628173423671591D+02, 1.92739047287844902D+02,
D 1.96866181672889994D+02, 2.01009316399281527D+02,
E 2.05168199482641199D+02, 2.09342586752536836D+02/
DATA GLN(67), GLN(68), GLN(69), GLN(70), GLN(71), GLN(72),
1 GLN(73), GLN(74), GLN(75), GLN(76), GLN(77), GLN(78),
2 GLN(79), GLN(80), GLN(81), GLN(82), GLN(83), GLN(84),
3 GLN(85), GLN(86), GLN(87), GLN(88)/
4 2.13532241494563261D+02, 2.17736934113954227D+02,
5 2.21956441819130334D+02, 2.26190548323727593D+02,
6 2.30439043565776952D+02, 2.34701723442818268D+02,
7 2.38978389561834323D+02, 2.43268849002982714D+02,
8 2.47572914096186884D+02, 2.51890402209723194D+02,
9 2.56221135550009525D+02, 2.60564940971863209D+02,
A 2.64921649798552801D+02, 2.69291097651019823D+02,
B 2.73673124285693704D+02, 2.78067573440366143D+02,
C 2.82474292687630396D+02, 2.86893133295426994D+02,
D 2.91323950094270308D+02, 2.95766601350760624D+02,
E 3.00220948647014132D+02, 3.04686856765668715D+02/
DATA GLN(89), GLN(90), GLN(91), GLN(92), GLN(93), GLN(94),
1 GLN(95), GLN(96), GLN(97), GLN(98), GLN(99), GLN(100)/
2 3.09164193580146922D+02, 3.13652829949879062D+02,
3 3.18152639620209327D+02, 3.22663499126726177D+02,
4 3.27185287703775217D+02, 3.31717887196928473D+02,
5 3.36261181979198477D+02, 3.40815058870799018D+02,
6 3.45379407062266854D+02, 3.49954118040770237D+02,
7 3.54539085519440809D+02, 3.59134205369575399D+02/
C COEFFICIENTS OF ASYMPTOTIC EXPANSION
DATA CF(1), CF(2), CF(3), CF(4), CF(5), CF(6), CF(7), CF(8),
1 CF(9), CF(10), CF(11), CF(12), CF(13), CF(14), CF(15),
2 CF(16), CF(17), CF(18), CF(19), CF(20), CF(21), CF(22)/
3 8.33333333333333333D-02, -2.77777777777777778D-03,
4 7.93650793650793651D-04, -5.95238095238095238D-04,
5 8.41750841750841751D-04, -1.91752691752691753D-03,
6 6.41025641025641026D-03, -2.95506535947712418D-02,
7 1.79644372368830573D-01, -1.39243221690590112D+00,
8 1.34028640441683920D+01, -1.56848284626002017D+02,
9 2.19310333333333333D+03, -3.61087712537249894D+04,
A 6.91472268851313067D+05, -1.52382215394074162D+07,
B 3.82900751391414141D+08, -1.08822660357843911D+10,
C 3.47320283765002252D+11, -1.23696021422692745D+13,
D 4.88788064793079335D+14, -2.13203339609193739D+16/
C
C LN(2*PI)
DATA CON / 1.83787706640934548D+00/
C
C***FIRST EXECUTABLE STATEMENT DGAMLN
IERR=0
IF (Z.LE.0.0D0) GO TO 70
IF (Z.GT.101.0D0) GO TO 10
NZ = INT(SNGL(Z))
FZ = Z - FLOAT(NZ)
IF (FZ.GT.0.0D0) GO TO 10
IF (NZ.GT.100) GO TO 10
DGAMLN = GLN(NZ)
RETURN
10 CONTINUE
WDTOL = D1MACH(4)
WDTOL = DMAX1(WDTOL,0.5D-18)
I1M = I1MACH(14)
RLN = D1MACH(5)*FLOAT(I1M)
FLN = DMIN1(RLN,20.0D0)
FLN = DMAX1(FLN,3.0D0)
FLN = FLN - 3.0D0
ZM = 1.8000D0 + 0.3875D0*FLN
MZ = INT(SNGL(ZM)) + 1
ZMIN = FLOAT(MZ)
ZDMY = Z
ZINC = 0.0D0
IF (Z.GE.ZMIN) GO TO 20
ZINC = ZMIN - FLOAT(NZ)
ZDMY = Z + ZINC
20 CONTINUE
ZP = 1.0D0/ZDMY
T1 = CF(1)*ZP
S = T1
IF (ZP.LT.WDTOL) GO TO 40
ZSQ = ZP*ZP
TST = T1*WDTOL
DO 30 K=2,22
ZP = ZP*ZSQ
TRM = CF(K)*ZP
IF (DABS(TRM).LT.TST) GO TO 40
S = S + TRM
30 CONTINUE
40 CONTINUE
IF (ZINC.NE.0.0D0) GO TO 50
TLG = DLOG(Z)
DGAMLN = Z*(TLG-1.0D0) + 0.5D0*(CON-TLG) + S
RETURN
50 CONTINUE
ZP = 1.0D0
NZ = INT(SNGL(ZINC))
DO 60 I=1,NZ
ZP = ZP*(Z+FLOAT(I-1))
60 CONTINUE
TLG = DLOG(ZDMY)
DGAMLN = ZDMY*(TLG-1.0D0) - DLOG(ZP) + 0.5D0*(CON-TLG) + S
RETURN
C
C
70 CONTINUE
IERR=1
RETURN
END

View file

@ -1,113 +0,0 @@
*DECK I1MACH
INTEGER FUNCTION I1MACH(I)
C***BEGIN PROLOGUE I1MACH
C***DATE WRITTEN 750101 (YYMMDD)
C***REVISION DATE 890213 (YYMMDD)
C***CATEGORY NO. R1
C***KEYWORDS LIBRARY=SLATEC,TYPE=INTEGER(I1MACH-I),MACHINE CONSTANTS
C***AUTHOR FOX, P. A., (BELL LABS)
C HALL, A. D., (BELL LABS)
C SCHRYER, N. L., (BELL LABS)
C***PURPOSE Returns integer machine dependent constants
C***DESCRIPTION
C
C I1MACH can be used to obtain machine-dependent parameters
C for the local machine environment. It is a function
C subroutine with one (input) argument, and can be called
C as follows, for example
C
C K = I1MACH(I)
C
C where I=1,...,16. The (output) value of K above is
C determined by the (input) value of I. The results for
C various values of I are discussed below.
C
C I/O unit numbers.
C I1MACH( 1) = the standard input unit.
C I1MACH( 2) = the standard output unit.
C I1MACH( 3) = the standard punch unit.
C I1MACH( 4) = the standard error message unit.
C
C Words.
C I1MACH( 5) = the number of bits per integer storage unit.
C I1MACH( 6) = the number of characters per integer storage unit.
C
C Integers.
C assume integers are represented in the S-digit, base-A form
C
C sign ( X(S-1)*A**(S-1) + ... + X(1)*A + X(0) )
C
C where 0 .LE. X(I) .LT. A for I=0,...,S-1.
C I1MACH( 7) = A, the base.
C I1MACH( 8) = S, the number of base-A digits.
C I1MACH( 9) = A**S - 1, the largest magnitude.
C
C Floating-Point Numbers.
C Assume floating-point numbers are represented in the T-digit,
C base-B form
C sign (B**E)*( (X(1)/B) + ... + (X(T)/B**T) )
C
C where 0 .LE. X(I) .LT. B for I=1,...,T,
C 0 .LT. X(1), and EMIN .LE. E .LE. EMAX.
C I1MACH(10) = B, the base.
C
C Single-Precision
C I1MACH(11) = T, the number of base-B digits.
C I1MACH(12) = EMIN, the smallest exponent E.
C I1MACH(13) = EMAX, the largest exponent E.
C
C Double-Precision
C I1MACH(14) = T, the number of base-B digits.
C I1MACH(15) = EMIN, the smallest exponent E.
C I1MACH(16) = EMAX, the largest exponent E.
C
C To alter this function for a particular environment,
C the desired set of DATA statements should be activated by
C removing the C from column 1. Also, the values of
C I1MACH(1) - I1MACH(4) should be checked for consistency
C with the local operating system.
C
C***REFERENCES FOX P.A., HALL A.D., SCHRYER N.L.,*FRAMEWORK FOR A
C PORTABLE LIBRARY*, ACM TRANSACTIONS ON MATHEMATICAL
C SOFTWARE, VOL. 4, NO. 2, JUNE 1978, PP. 177-188.
C***ROUTINES CALLED (NONE)
C***END PROLOGUE I1MACH
C
INTEGER IMACH(16),OUTPUT
SAVE IMACH
EQUIVALENCE (IMACH(4),OUTPUT)
C
C MACHINE CONSTANTS FOR THE IBM PC
C
DATA IMACH( 1) / 5 /
DATA IMACH( 2) / 6 /
DATA IMACH( 3) / 0 /
DATA IMACH( 4) / 0 /
DATA IMACH( 5) / 32 /
DATA IMACH( 6) / 4 /
DATA IMACH( 7) / 2 /
DATA IMACH( 8) / 31 /
DATA IMACH( 9) / 2147483647 /
DATA IMACH(10) / 2 /
DATA IMACH(11) / 24 /
DATA IMACH(12) / -125 /
DATA IMACH(13) / 127 /
DATA IMACH(14) / 53 /
DATA IMACH(15) / -1021 /
DATA IMACH(16) / 1023 /
C
C***FIRST EXECUTABLE STATEMENT I1MACH
IF (I .LT. 1 .OR. I .GT. 16) GO TO 10
C
I1MACH = IMACH(I)
RETURN
C
10 CONTINUE
WRITE (UNIT = OUTPUT, FMT = 9000)
9000 FORMAT ('1ERROR 1 IN I1MACH - I OUT OF BOUNDS')
C
C CALL FDUMP
C
C
STOP
END

View file

@ -1,22 +0,0 @@
SUBROUTINE XERROR(MESS,NMESS,L1,L2)
C
C THIS IS A DUMMY XERROR ROUTINE TO PRINT ERROR MESSAGES WITH NMESS
C CHARACTERS. L1 AND L2 ARE DUMMY PARAMETERS TO MAKE THIS CALL
C COMPATIBLE WITH THE SLATEC XERROR ROUTINE. THIS IS A FORTRAN 77
C ROUTINE.
C
CHARACTER*(*) MESS
NN=NMESS/70
NR=NMESS-70*NN
IF(NR.NE.0) NN=NN+1
K=1
PRINT 900
900 FORMAT(/)
DO 10 I=1,NN
KMIN=MIN0(K+69,NMESS)
PRINT *, MESS(K:KMIN)
K=K+70
10 CONTINUE
PRINT 900
RETURN
END

View file

@ -1,29 +0,0 @@
DOUBLE PRECISION FUNCTION ZABS(ZR, ZI)
C***BEGIN PROLOGUE ZABS
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
C
C ZABS COMPUTES THE ABSOLUTE VALUE OR MAGNITUDE OF A DOUBLE
C PRECISION COMPLEX VARIABLE CMPLX(ZR,ZI)
C
C***ROUTINES CALLED (NONE)
C***END PROLOGUE ZABS
DOUBLE PRECISION ZR, ZI, U, V, Q, S
U = DABS(ZR)
V = DABS(ZI)
S = U + V
C-----------------------------------------------------------------------
C S*1.0D0 MAKES AN UNNORMALIZED UNDERFLOW ON CDC MACHINES INTO A
C TRUE FLOATING ZERO
C-----------------------------------------------------------------------
S = S*1.0D+0
IF (S.EQ.0.0D+0) GO TO 20
IF (U.GT.V) GO TO 10
Q = U/V
ZABS = V*DSQRT(1.D+0+Q*Q)
RETURN
10 Q = V/U
ZABS = U*DSQRT(1.D+0+Q*Q)
RETURN
20 ZABS = 0.0D+0
RETURN
END

View file

@ -1,99 +0,0 @@
SUBROUTINE ZACAI(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, RL, TOL,
* ELIM, ALIM)
C***BEGIN PROLOGUE ZACAI
C***REFER TO ZAIRY
C
C ZACAI APPLIES THE ANALYTIC CONTINUATION FORMULA
C
C K(FNU,ZN*EXP(MP))=K(FNU,ZN)*EXP(-MP*FNU) - MP*I(FNU,ZN)
C MP=PI*MR*CMPLX(0.0,1.0)
C
C TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT
C HALF Z PLANE FOR USE WITH ZAIRY WHERE FNU=1/3 OR 2/3 AND N=1.
C ZACAI IS THE SAME AS ZACON WITH THE PARTS FOR LARGER ORDERS AND
C RECURRENCE REMOVED. A RECURSIVE CALL TO ZACON CAN RESULT IF ZACON
C IS CALLED FROM ZAIRY.
C
C***ROUTINES CALLED ZASYI,ZBKNU,ZMLRI,ZSERI,ZS1S2,D1MACH,ZABS
C***END PROLOGUE ZACAI
C COMPLEX CSGN,CSPN,C1,C2,Y,Z,ZN,CY
DOUBLE PRECISION ALIM, ARG, ASCLE, AZ, CSGNR, CSGNI, CSPNR,
* CSPNI, C1R, C1I, C2R, C2I, CYR, CYI, DFNU, ELIM, FMR, FNU, PI,
* RL, SGN, TOL, YY, YR, YI, ZR, ZI, ZNR, ZNI, D1MACH, ZABS
INTEGER INU, IUF, KODE, MR, N, NN, NW, NZ
DIMENSION YR(N), YI(N), CYR(2), CYI(2)
DATA PI / 3.14159265358979324D0 /
NZ = 0
ZNR = -ZR
ZNI = -ZI
AZ = ZABS(COMPLEX(ZR,ZI))
NN = N
DFNU = FNU + DBLE(FLOAT(N-1))
IF (AZ.LE.2.0D0) GO TO 10
IF (AZ*AZ*0.25D0.GT.DFNU+1.0D0) GO TO 20
10 CONTINUE
C-----------------------------------------------------------------------
C POWER SERIES FOR THE I FUNCTION
C-----------------------------------------------------------------------
CALL ZSERI(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL, ELIM, ALIM)
GO TO 40
20 CONTINUE
IF (AZ.LT.RL) GO TO 30
C-----------------------------------------------------------------------
C ASYMPTOTIC EXPANSION FOR LARGE Z FOR THE I FUNCTION
C-----------------------------------------------------------------------
CALL ZASYI(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, RL, TOL, ELIM,
* ALIM)
IF (NW.LT.0) GO TO 80
GO TO 40
30 CONTINUE
C-----------------------------------------------------------------------
C MILLER ALGORITHM NORMALIZED BY THE SERIES FOR THE I FUNCTION
C-----------------------------------------------------------------------
CALL ZMLRI(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL)
IF(NW.LT.0) GO TO 80
40 CONTINUE
C-----------------------------------------------------------------------
C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION
C-----------------------------------------------------------------------
CALL ZBKNU(ZNR, ZNI, FNU, KODE, 1, CYR, CYI, NW, TOL, ELIM, ALIM)
IF (NW.NE.0) GO TO 80
FMR = DBLE(FLOAT(MR))
SGN = -DSIGN(PI,FMR)
CSGNR = 0.0D0
CSGNI = SGN
IF (KODE.EQ.1) GO TO 50
YY = -ZNI
CSGNR = -CSGNI*DSIN(YY)
CSGNI = CSGNI*DCOS(YY)
50 CONTINUE
C-----------------------------------------------------------------------
C CALCULATE CSPN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
C WHEN FNU IS LARGE
C-----------------------------------------------------------------------
INU = INT(SNGL(FNU))
ARG = (FNU-DBLE(FLOAT(INU)))*SGN
CSPNR = DCOS(ARG)
CSPNI = DSIN(ARG)
IF (MOD(INU,2).EQ.0) GO TO 60
CSPNR = -CSPNR
CSPNI = -CSPNI
60 CONTINUE
C1R = CYR(1)
C1I = CYI(1)
C2R = YR(1)
C2I = YI(1)
IF (KODE.EQ.1) GO TO 70
IUF = 0
ASCLE = 1.0D+3*D1MACH(1)/TOL
CALL ZS1S2(ZNR, ZNI, C1R, C1I, C2R, C2I, NW, ASCLE, ALIM, IUF)
NZ = NZ + NW
70 CONTINUE
YR(1) = CSPNR*C1R - CSPNI*C1I + CSGNR*C2R - CSGNI*C2I
YI(1) = CSPNR*C1I + CSPNI*C1R + CSGNR*C2I + CSGNI*C2R
RETURN
80 CONTINUE
NZ = -1
IF(NW.EQ.(-2)) NZ=-2
RETURN
END

View file

@ -1,203 +0,0 @@
SUBROUTINE ZACON(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, RL, FNUL,
* TOL, ELIM, ALIM)
C***BEGIN PROLOGUE ZACON
C***REFER TO ZBESK,ZBESH
C
C ZACON APPLIES THE ANALYTIC CONTINUATION FORMULA
C
C K(FNU,ZN*EXP(MP))=K(FNU,ZN)*EXP(-MP*FNU) - MP*I(FNU,ZN)
C MP=PI*MR*CMPLX(0.0,1.0)
C
C TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT
C HALF Z PLANE
C
C***ROUTINES CALLED ZBINU,ZBKNU,ZS1S2,D1MACH,ZABS,ZMLT
C***END PROLOGUE ZACON
C COMPLEX CK,CONE,CSCL,CSCR,CSGN,CSPN,CY,CZERO,C1,C2,RZ,SC1,SC2,ST,
C *S1,S2,Y,Z,ZN
DOUBLE PRECISION ALIM, ARG, ASCLE, AS2, AZN, BRY, BSCLE, CKI,
* CKR, CONER, CPN, CSCL, CSCR, CSGNI, CSGNR, CSPNI, CSPNR,
* CSR, CSRR, CSSR, CYI, CYR, C1I, C1M, C1R, C2I, C2R, ELIM, FMR,
* FN, FNU, FNUL, PI, PTI, PTR, RAZN, RL, RZI, RZR, SC1I, SC1R,
* SC2I, SC2R, SGN, SPN, STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR,
* YY, ZEROR, ZI, ZNI, ZNR, ZR, D1MACH, ZABS
INTEGER I, INU, IUF, KFLAG, KODE, MR, N, NN, NW, NZ
DIMENSION YR(N), YI(N), CYR(2), CYI(2), CSSR(3), CSRR(3), BRY(3)
DATA PI / 3.14159265358979324D0 /
DATA ZEROR,CONER / 0.0D0,1.0D0 /
NZ = 0
ZNR = -ZR
ZNI = -ZI
NN = N
CALL ZBINU(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, RL, FNUL, TOL,
* ELIM, ALIM)
IF (NW.LT.0) GO TO 90
C-----------------------------------------------------------------------
C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION
C-----------------------------------------------------------------------
NN = MIN0(2,N)
CALL ZBKNU(ZNR, ZNI, FNU, KODE, NN, CYR, CYI, NW, TOL, ELIM, ALIM)
IF (NW.NE.0) GO TO 90
S1R = CYR(1)
S1I = CYI(1)
FMR = DBLE(FLOAT(MR))
SGN = -DSIGN(PI,FMR)
CSGNR = ZEROR
CSGNI = SGN
IF (KODE.EQ.1) GO TO 10
YY = -ZNI
CPN = DCOS(YY)
SPN = DSIN(YY)
CALL ZMLT(CSGNR, CSGNI, CPN, SPN, CSGNR, CSGNI)
10 CONTINUE
C-----------------------------------------------------------------------
C CALCULATE CSPN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
C WHEN FNU IS LARGE
C-----------------------------------------------------------------------
INU = INT(SNGL(FNU))
ARG = (FNU-DBLE(FLOAT(INU)))*SGN
CPN = DCOS(ARG)
SPN = DSIN(ARG)
CSPNR = CPN
CSPNI = SPN
IF (MOD(INU,2).EQ.0) GO TO 20
CSPNR = -CSPNR
CSPNI = -CSPNI
20 CONTINUE
IUF = 0
C1R = S1R
C1I = S1I
C2R = YR(1)
C2I = YI(1)
ASCLE = 1.0D+3*D1MACH(1)/TOL
IF (KODE.EQ.1) GO TO 30
CALL ZS1S2(ZNR, ZNI, C1R, C1I, C2R, C2I, NW, ASCLE, ALIM, IUF)
NZ = NZ + NW
SC1R = C1R
SC1I = C1I
30 CONTINUE
CALL ZMLT(CSPNR, CSPNI, C1R, C1I, STR, STI)
CALL ZMLT(CSGNR, CSGNI, C2R, C2I, PTR, PTI)
YR(1) = STR + PTR
YI(1) = STI + PTI
IF (N.EQ.1) RETURN
CSPNR = -CSPNR
CSPNI = -CSPNI
S2R = CYR(2)
S2I = CYI(2)
C1R = S2R
C1I = S2I
C2R = YR(2)
C2I = YI(2)
IF (KODE.EQ.1) GO TO 40
CALL ZS1S2(ZNR, ZNI, C1R, C1I, C2R, C2I, NW, ASCLE, ALIM, IUF)
NZ = NZ + NW
SC2R = C1R
SC2I = C1I
40 CONTINUE
CALL ZMLT(CSPNR, CSPNI, C1R, C1I, STR, STI)
CALL ZMLT(CSGNR, CSGNI, C2R, C2I, PTR, PTI)
YR(2) = STR + PTR
YI(2) = STI + PTI
IF (N.EQ.2) RETURN
CSPNR = -CSPNR
CSPNI = -CSPNI
AZN = ZABS(COMPLEX(ZNR,ZNI))
RAZN = 1.0D0/AZN
STR = ZNR*RAZN
STI = -ZNI*RAZN
RZR = (STR+STR)*RAZN
RZI = (STI+STI)*RAZN
FN = FNU + 1.0D0
CKR = FN*RZR
CKI = FN*RZI
C-----------------------------------------------------------------------
C SCALE NEAR EXPONENT EXTREMES DURING RECURRENCE ON K FUNCTIONS
C-----------------------------------------------------------------------
CSCL = 1.0D0/TOL
CSCR = TOL
CSSR(1) = CSCL
CSSR(2) = CONER
CSSR(3) = CSCR
CSRR(1) = CSCR
CSRR(2) = CONER
CSRR(3) = CSCL
BRY(1) = ASCLE
BRY(2) = 1.0D0/ASCLE
BRY(3) = D1MACH(2)
AS2 = ZABS(COMPLEX(S2R,S2I))
KFLAG = 2
IF (AS2.GT.BRY(1)) GO TO 50
KFLAG = 1
GO TO 60
50 CONTINUE
IF (AS2.LT.BRY(2)) GO TO 60
KFLAG = 3
60 CONTINUE
BSCLE = BRY(KFLAG)
S1R = S1R*CSSR(KFLAG)
S1I = S1I*CSSR(KFLAG)
S2R = S2R*CSSR(KFLAG)
S2I = S2I*CSSR(KFLAG)
CSR = CSRR(KFLAG)
DO 80 I=3,N
STR = S2R
STI = S2I
S2R = CKR*STR - CKI*STI + S1R
S2I = CKR*STI + CKI*STR + S1I
S1R = STR
S1I = STI
C1R = S2R*CSR
C1I = S2I*CSR
STR = C1R
STI = C1I
C2R = YR(I)
C2I = YI(I)
IF (KODE.EQ.1) GO TO 70
IF (IUF.LT.0) GO TO 70
CALL ZS1S2(ZNR, ZNI, C1R, C1I, C2R, C2I, NW, ASCLE, ALIM, IUF)
NZ = NZ + NW
SC1R = SC2R
SC1I = SC2I
SC2R = C1R
SC2I = C1I
IF (IUF.NE.3) GO TO 70
IUF = -4
S1R = SC1R*CSSR(KFLAG)
S1I = SC1I*CSSR(KFLAG)
S2R = SC2R*CSSR(KFLAG)
S2I = SC2I*CSSR(KFLAG)
STR = SC2R
STI = SC2I
70 CONTINUE
PTR = CSPNR*C1R - CSPNI*C1I
PTI = CSPNR*C1I + CSPNI*C1R
YR(I) = PTR + CSGNR*C2R - CSGNI*C2I
YI(I) = PTI + CSGNR*C2I + CSGNI*C2R
CKR = CKR + RZR
CKI = CKI + RZI
CSPNR = -CSPNR
CSPNI = -CSPNI
IF (KFLAG.GE.3) GO TO 80
PTR = DABS(C1R)
PTI = DABS(C1I)
C1M = DMAX1(PTR,PTI)
IF (C1M.LE.BSCLE) GO TO 80
KFLAG = KFLAG + 1
BSCLE = BRY(KFLAG)
S1R = S1R*CSR
S1I = S1I*CSR
S2R = STR
S2I = STI
S1R = S1R*CSSR(KFLAG)
S1I = S1I*CSSR(KFLAG)
S2R = S2R*CSSR(KFLAG)
S2I = S2I*CSSR(KFLAG)
CSR = CSRR(KFLAG)
80 CONTINUE
RETURN
90 CONTINUE
NZ = -1
IF(NW.EQ.(-2)) NZ=-2
RETURN
END

View file

@ -1,393 +0,0 @@
SUBROUTINE ZAIRY(ZR, ZI, ID, KODE, AIR, AII, NZ, IERR)
C***BEGIN PROLOGUE ZAIRY
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE AIRY FUNCTIONS AI(Z) AND DAI(Z) FOR COMPLEX Z
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C ON KODE=1, ZAIRY COMPUTES THE COMPLEX AIRY FUNCTION AI(Z) OR
C ITS DERIVATIVE DAI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
C KODE=2, A SCALING OPTION CEXP(ZTA)*AI(Z) OR CEXP(ZTA)*
C DAI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL DECAY IN
C -PI/3.LT.ARG(Z).LT.PI/3 AND THE EXPONENTIAL GROWTH IN
C PI/3.LT.ABS(ARG(Z)).LT.PI WHERE ZTA=(2/3)*Z*CSQRT(Z).
C
C WHILE THE AIRY FUNCTIONS AI(Z) AND DAI(Z)/DZ ARE ANALYTIC IN
C THE WHOLE Z PLANE, THE CORRESPONDING SCALED FUNCTIONS DEFINED
C FOR KODE=2 HAVE A CUT ALONG THE NEGATIVE REAL AXIS.
C DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
C MATHEMATICAL FUNCTIONS (REF. 1).
C
C INPUT ZR,ZI ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI)
C ID - ORDER OF DERIVATIVE, ID=0 OR ID=1
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 RETURNS
C AI=AI(Z) ON ID=0 OR
C AI=DAI(Z)/DZ ON ID=1
C = 2 RETURNS
C AI=CEXP(ZTA)*AI(Z) ON ID=0 OR
C AI=CEXP(ZTA)*DAI(Z)/DZ ON ID=1 WHERE
C ZTA=(2/3)*Z*CSQRT(Z)
C
C OUTPUT AIR,AII ARE DOUBLE PRECISION
C AIR,AII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
C KODE
C NZ - UNDERFLOW INDICATOR
C NZ= 0 , NORMAL RETURN
C NZ= 1 , AI=CMPLX(0.0D0,0.0D0) DUE TO UNDERFLOW IN
C -PI/3.LT.ARG(Z).LT.PI/3 ON KODE=1
C IERR - ERROR FLAG
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, REAL(ZTA)
C TOO LARGE ON KODE=1
C IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED
C LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
C PRODUCE LESS THAN HALF OF MACHINE ACCURACY
C IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION
C COMPLETE LOSS OF ACCURACY BY ARGUMENT
C REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C AI AND DAI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE K BESSEL
C FUNCTIONS BY
C
C AI(Z)=C*SQRT(Z)*K(1/3,ZTA) , DAI(Z)=-C*Z*K(2/3,ZTA)
C C=1.0/(PI*SQRT(3.0))
C ZTA=(2/3)*Z**(3/2)
C
C WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
C OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
C THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
C THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
C FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
C ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
C FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
C LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
C MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
C AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
C PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
C PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
C ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
C NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
C DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
C EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
C NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
C PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
C MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED ZACAI,ZBKNU,ZEXP,ZSQRT,I1MACH,D1MACH
C***END PROLOGUE ZAIRY
C COMPLEX AI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
DOUBLE PRECISION AA, AD, AII, AIR, AK, ALIM, ATRM, AZ, AZ3, BK,
* CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2, DIG,
* DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR,
* S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI,
* ZEROR, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, ZABS, ALAZ, BB
INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ, I1MACH
DIMENSION CYR(1), CYI(1)
DATA TTH, C1, C2, COEF /6.66666666666666667D-01,
* 3.55028053887817240D-01,2.58819403792806799D-01,
* 1.83776298473930683D-01/
DATA ZEROR, ZEROI, CONER, CONEI /0.0D0,0.0D0,1.0D0,0.0D0/
C***FIRST EXECUTABLE STATEMENT ZAIRY
IERR = 0
NZ=0
IF (ID.LT.0 .OR. ID.GT.1) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (IERR.NE.0) RETURN
AZ = ZABS(COMPLEX(ZR,ZI))
TOL = DMAX1(D1MACH(4),1.0D-18)
FID = DBLE(FLOAT(ID))
IF (AZ.GT.1.0D0) GO TO 70
C-----------------------------------------------------------------------
C POWER SERIES FOR CABS(Z).LE.1.
C-----------------------------------------------------------------------
S1R = CONER
S1I = CONEI
S2R = CONER
S2I = CONEI
IF (AZ.LT.TOL) GO TO 170
AA = AZ*AZ
IF (AA.LT.TOL/AZ) GO TO 40
TRM1R = CONER
TRM1I = CONEI
TRM2R = CONER
TRM2I = CONEI
ATRM = 1.0D0
STR = ZR*ZR - ZI*ZI
STI = ZR*ZI + ZI*ZR
Z3R = STR*ZR - STI*ZI
Z3I = STR*ZI + STI*ZR
AZ3 = AZ*AA
AK = 2.0D0 + FID
BK = 3.0D0 - FID - FID
CK = 4.0D0 - FID
DK = 3.0D0 + FID + FID
D1 = AK*DK
D2 = BK*CK
AD = DMIN1(D1,D2)
AK = 24.0D0 + 9.0D0*FID
BK = 30.0D0 - 9.0D0*FID
DO 30 K=1,25
STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
TRM1R = STR
S1R = S1R + TRM1R
S1I = S1I + TRM1I
STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
TRM2R = STR
S2R = S2R + TRM2R
S2I = S2I + TRM2I
ATRM = ATRM*AZ3/AD
D1 = D1 + AK
D2 = D2 + BK
AD = DMIN1(D1,D2)
IF (ATRM.LT.TOL*AD) GO TO 40
AK = AK + 18.0D0
BK = BK + 18.0D0
30 CONTINUE
40 CONTINUE
IF (ID.EQ.1) GO TO 50
AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I)
AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R)
IF (KODE.EQ.1) RETURN
CALL ZSQRT(ZR, ZI, STR, STI)
ZTAR = TTH*(ZR*STR-ZI*STI)
ZTAI = TTH*(ZR*STI+ZI*STR)
CALL ZEXP(ZTAR, ZTAI, STR, STI)
PTR = AIR*STR - AII*STI
AII = AIR*STI + AII*STR
AIR = PTR
RETURN
50 CONTINUE
AIR = -S2R*C2
AII = -S2I*C2
IF (AZ.LE.TOL) GO TO 60
STR = ZR*S1R - ZI*S1I
STI = ZR*S1I + ZI*S1R
CC = C1/(1.0D0+FID)
AIR = AIR + CC*(STR*ZR-STI*ZI)
AII = AII + CC*(STR*ZI+STI*ZR)
60 CONTINUE
IF (KODE.EQ.1) RETURN
CALL ZSQRT(ZR, ZI, STR, STI)
ZTAR = TTH*(ZR*STR-ZI*STI)
ZTAI = TTH*(ZR*STI+ZI*STR)
CALL ZEXP(ZTAR, ZTAI, STR, STI)
PTR = STR*AIR - STI*AII
AII = STR*AII + STI*AIR
AIR = PTR
RETURN
C-----------------------------------------------------------------------
C CASE FOR CABS(Z).GT.1.0
C-----------------------------------------------------------------------
70 CONTINUE
FNU = (1.0D0+FID)/3.0D0
C-----------------------------------------------------------------------
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0D-18.
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C-----------------------------------------------------------------------
K1 = I1MACH(15)
K2 = I1MACH(16)
R1M5 = D1MACH(5)
K = MIN0(IABS(K1),IABS(K2))
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
K1 = I1MACH(14) - 1
AA = R1M5*DBLE(FLOAT(K1))
DIG = DMIN1(AA,18.0D0)
AA = AA*2.303D0
ALIM = ELIM + DMAX1(-AA,-41.45D0)
RL = 1.2D0*DIG + 3.0D0
ALAZ = DLOG(AZ)
C--------------------------------------------------------------------------
C TEST FOR PROPER RANGE
C-----------------------------------------------------------------------
AA=0.5D0/TOL
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
AA=DMIN1(AA,BB)
AA=AA**TTH
IF (AZ.GT.AA) GO TO 260
AA=DSQRT(AA)
IF (AZ.GT.AA) IERR=3
CALL ZSQRT(ZR, ZI, CSQR, CSQI)
ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
C-----------------------------------------------------------------------
C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
C-----------------------------------------------------------------------
IFLAG = 0
SFAC = 1.0D0
AK = ZTAI
IF (ZR.GE.0.0D0) GO TO 80
BK = ZTAR
CK = -DABS(BK)
ZTAR = CK
ZTAI = AK
80 CONTINUE
IF (ZI.NE.0.0D0) GO TO 90
IF (ZR.GT.0.0D0) GO TO 90
ZTAR = 0.0D0
ZTAI = AK
90 CONTINUE
AA = ZTAR
IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
IF (KODE.EQ.2) GO TO 100
C-----------------------------------------------------------------------
C OVERFLOW TEST
C-----------------------------------------------------------------------
IF (AA.GT.(-ALIM)) GO TO 100
AA = -AA + 0.25D0*ALAZ
IFLAG = 1
SFAC = TOL
IF (AA.GT.ELIM) GO TO 270
100 CONTINUE
C-----------------------------------------------------------------------
C CBKNU AND CACON RETURN EXP(ZTA)*K(FNU,ZTA) ON KODE=2
C-----------------------------------------------------------------------
MR = 1
IF (ZI.LT.0.0D0) MR = -1
CALL ZACAI(ZTAR, ZTAI, FNU, KODE, MR, 1, CYR, CYI, NN, RL, TOL,
* ELIM, ALIM)
IF (NN.LT.0) GO TO 280
NZ = NZ + NN
GO TO 130
110 CONTINUE
IF (KODE.EQ.2) GO TO 120
C-----------------------------------------------------------------------
C UNDERFLOW TEST
C-----------------------------------------------------------------------
IF (AA.LT.ALIM) GO TO 120
AA = -AA - 0.25D0*ALAZ
IFLAG = 2
SFAC = 1.0D0/TOL
IF (AA.LT.(-ELIM)) GO TO 210
120 CONTINUE
CALL ZBKNU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, TOL, ELIM,
* ALIM)
130 CONTINUE
S1R = CYR(1)*COEF
S1I = CYI(1)*COEF
IF (IFLAG.NE.0) GO TO 150
IF (ID.EQ.1) GO TO 140
AIR = CSQR*S1R - CSQI*S1I
AII = CSQR*S1I + CSQI*S1R
RETURN
140 CONTINUE
AIR = -(ZR*S1R-ZI*S1I)
AII = -(ZR*S1I+ZI*S1R)
RETURN
150 CONTINUE
S1R = S1R*SFAC
S1I = S1I*SFAC
IF (ID.EQ.1) GO TO 160
STR = S1R*CSQR - S1I*CSQI
S1I = S1R*CSQI + S1I*CSQR
S1R = STR
AIR = S1R/SFAC
AII = S1I/SFAC
RETURN
160 CONTINUE
STR = -(S1R*ZR-S1I*ZI)
S1I = -(S1R*ZI+S1I*ZR)
S1R = STR
AIR = S1R/SFAC
AII = S1I/SFAC
RETURN
170 CONTINUE
AA = 1.0D+3*D1MACH(1)
S1R = ZEROR
S1I = ZEROI
IF (ID.EQ.1) GO TO 190
IF (AZ.LE.AA) GO TO 180
S1R = C2*ZR
S1I = C2*ZI
180 CONTINUE
AIR = C1 - S1R
AII = -S1I
RETURN
190 CONTINUE
AIR = -C2
AII = 0.0D0
AA = DSQRT(AA)
IF (AZ.LE.AA) GO TO 200
S1R = 0.5D0*(ZR*ZR-ZI*ZI)
S1I = ZR*ZI
200 CONTINUE
AIR = AIR + C1*S1R
AII = AII + C1*S1I
RETURN
210 CONTINUE
NZ = 1
AIR = ZEROR
AII = ZEROI
RETURN
270 CONTINUE
NZ = 0
IERR=2
RETURN
280 CONTINUE
IF(NN.EQ.(-1)) GO TO 270
NZ=0
IERR=5
RETURN
260 CONTINUE
IERR=4
NZ=0
RETURN
END

View file

@ -1,165 +0,0 @@
SUBROUTINE ZASYI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM,
* ALIM)
C***BEGIN PROLOGUE ZASYI
C***REFER TO ZBESI,ZBESK
C
C ZASYI COMPUTES THE I BESSEL FUNCTION FOR REAL(Z).GE.0.0 BY
C MEANS OF THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z) IN THE
C REGION CABS(Z).GT.MAX(RL,FNU*FNU/2). NZ=0 IS A NORMAL RETURN.
C NZ.LT.0 INDICATES AN OVERFLOW ON KODE=1.
C
C***ROUTINES CALLED D1MACH,ZABS,ZDIV,ZEXP,ZMLT,ZSQRT
C***END PROLOGUE ZASYI
C COMPLEX AK1,CK,CONE,CS1,CS2,CZ,CZERO,DK,EZ,P1,RZ,S2,Y,Z
DOUBLE PRECISION AA, AEZ, AK, AK1I, AK1R, ALIM, ARG, ARM, ATOL,
* AZ, BB, BK, CKI, CKR, CONEI, CONER, CS1I, CS1R, CS2I, CS2R, CZI,
* CZR, DFNU, DKI, DKR, DNU2, ELIM, EZI, EZR, FDN, FNU, PI, P1I,
* P1R, RAZ, RL, RTPI, RTR1, RZI, RZR, S, SGN, SQK, STI, STR, S2I,
* S2R, TOL, TZI, TZR, YI, YR, ZEROI, ZEROR, ZI, ZR, D1MACH, ZABS
INTEGER I, IB, IL, INU, J, JL, K, KODE, KODED, M, N, NN, NZ
DIMENSION YR(N), YI(N)
DATA PI, RTPI /3.14159265358979324D0 , 0.159154943091895336D0 /
DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 /
C
NZ = 0
AZ = ZABS(COMPLEX(ZR,ZI))
ARM = 1.0D+3*D1MACH(1)
RTR1 = DSQRT(ARM)
IL = MIN0(2,N)
DFNU = FNU + DBLE(FLOAT(N-IL))
C-----------------------------------------------------------------------
C OVERFLOW TEST
C-----------------------------------------------------------------------
RAZ = 1.0D0/AZ
STR = ZR*RAZ
STI = -ZI*RAZ
AK1R = RTPI*STR*RAZ
AK1I = RTPI*STI*RAZ
CALL ZSQRT(AK1R, AK1I, AK1R, AK1I)
CZR = ZR
CZI = ZI
IF (KODE.NE.2) GO TO 10
CZR = ZEROR
CZI = ZI
10 CONTINUE
IF (DABS(CZR).GT.ELIM) GO TO 100
DNU2 = DFNU + DFNU
KODED = 1
IF ((DABS(CZR).GT.ALIM) .AND. (N.GT.2)) GO TO 20
KODED = 0
CALL ZEXP(CZR, CZI, STR, STI)
CALL ZMLT(AK1R, AK1I, STR, STI, AK1R, AK1I)
20 CONTINUE
FDN = 0.0D0
IF (DNU2.GT.RTR1) FDN = DNU2*DNU2
EZR = ZR*8.0D0
EZI = ZI*8.0D0
C-----------------------------------------------------------------------
C WHEN Z IS IMAGINARY, THE ERROR TEST MUST BE MADE RELATIVE TO THE
C FIRST RECIPROCAL POWER SINCE THIS IS THE LEADING TERM OF THE
C EXPANSION FOR THE IMAGINARY PART.
C-----------------------------------------------------------------------
AEZ = 8.0D0*AZ
S = TOL/AEZ
JL = INT(SNGL(RL+RL)) + 2
P1R = ZEROR
P1I = ZEROI
IF (ZI.EQ.0.0D0) GO TO 30
C-----------------------------------------------------------------------
C CALCULATE EXP(PI*(0.5+FNU+N-IL)*I) TO MINIMIZE LOSSES OF
C SIGNIFICANCE WHEN FNU OR N IS LARGE
C-----------------------------------------------------------------------
INU = INT(SNGL(FNU))
ARG = (FNU-DBLE(FLOAT(INU)))*PI
INU = INU + N - IL
AK = -DSIN(ARG)
BK = DCOS(ARG)
IF (ZI.LT.0.0D0) BK = -BK
P1R = AK
P1I = BK
IF (MOD(INU,2).EQ.0) GO TO 30
P1R = -P1R
P1I = -P1I
30 CONTINUE
DO 70 K=1,IL
SQK = FDN - 1.0D0
ATOL = S*DABS(SQK)
SGN = 1.0D0
CS1R = CONER
CS1I = CONEI
CS2R = CONER
CS2I = CONEI
CKR = CONER
CKI = CONEI
AK = 0.0D0
AA = 1.0D0
BB = AEZ
DKR = EZR
DKI = EZI
DO 40 J=1,JL
CALL ZDIV(CKR, CKI, DKR, DKI, STR, STI)
CKR = STR*SQK
CKI = STI*SQK
CS2R = CS2R + CKR
CS2I = CS2I + CKI
SGN = -SGN
CS1R = CS1R + CKR*SGN
CS1I = CS1I + CKI*SGN
DKR = DKR + EZR
DKI = DKI + EZI
AA = AA*DABS(SQK)/BB
BB = BB + AEZ
AK = AK + 8.0D0
SQK = SQK - AK
IF (AA.LE.ATOL) GO TO 50
40 CONTINUE
GO TO 110
50 CONTINUE
S2R = CS1R
S2I = CS1I
IF (ZR+ZR.GE.ELIM) GO TO 60
TZR = ZR + ZR
TZI = ZI + ZI
CALL ZEXP(-TZR, -TZI, STR, STI)
CALL ZMLT(STR, STI, P1R, P1I, STR, STI)
CALL ZMLT(STR, STI, CS2R, CS2I, STR, STI)
S2R = S2R + STR
S2I = S2I + STI
60 CONTINUE
FDN = FDN + 8.0D0*DFNU + 4.0D0
P1R = -P1R
P1I = -P1I
M = N - IL + K
YR(M) = S2R*AK1R - S2I*AK1I
YI(M) = S2R*AK1I + S2I*AK1R
70 CONTINUE
IF (N.LE.2) RETURN
NN = N
K = NN - 2
AK = DBLE(FLOAT(K))
STR = ZR*RAZ
STI = -ZI*RAZ
RZR = (STR+STR)*RAZ
RZI = (STI+STI)*RAZ
IB = 3
DO 80 I=IB,NN
YR(K) = (AK+FNU)*(RZR*YR(K+1)-RZI*YI(K+1)) + YR(K+2)
YI(K) = (AK+FNU)*(RZR*YI(K+1)+RZI*YR(K+1)) + YI(K+2)
AK = AK - 1.0D0
K = K - 1
80 CONTINUE
IF (KODED.EQ.0) RETURN
CALL ZEXP(CZR, CZI, CKR, CKI)
DO 90 I=1,NN
STR = YR(I)*CKR - YI(I)*CKI
YI(I) = YR(I)*CKI + YI(I)*CKR
YR(I) = STR
90 CONTINUE
RETURN
100 CONTINUE
NZ = -1
RETURN
110 CONTINUE
NZ=-2
RETURN
END

View file

@ -1,348 +0,0 @@
SUBROUTINE ZBESH(ZR, ZI, FNU, KODE, M, N, CYR, CYI, NZ, IERR)
C***BEGIN PROLOGUE ZBESH
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS H-BESSEL FUNCTIONS,BESSEL FUNCTIONS OF COMPLEX ARGUMENT,
C BESSEL FUNCTIONS OF THIRD KIND,HANKEL FUNCTIONS
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE THE H-BESSEL FUNCTIONS OF A COMPLEX ARGUMENT
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C ON KODE=1, ZBESH COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
C HANKEL (BESSEL) FUNCTIONS CY(J)=H(M,FNU+J-1,Z) FOR KINDS M=1
C OR 2, REAL, NONNEGATIVE ORDERS FNU+J-1, J=1,...,N, AND COMPLEX
C Z.NE.CMPLX(0.0,0.0) IN THE CUT PLANE -PI.LT.ARG(Z).LE.PI.
C ON KODE=2, ZBESH RETURNS THE SCALED HANKEL FUNCTIONS
C
C CY(I)=EXP(-MM*Z*I)*H(M,FNU+J-1,Z) MM=3-2*M, I**2=-1.
C
C WHICH REMOVES THE EXPONENTIAL BEHAVIOR IN BOTH THE UPPER AND
C LOWER HALF PLANES. DEFINITIONS AND NOTATION ARE FOUND IN THE
C NBS HANDBOOK OF MATHEMATICAL FUNCTIONS (REF. 1).
C
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0),
C -PT.LT.ARG(Z).LE.PI
C FNU - ORDER OF INITIAL H FUNCTION, FNU.GE.0.0D0
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 RETURNS
C CY(J)=H(M,FNU+J-1,Z), J=1,...,N
C = 2 RETURNS
C CY(J)=H(M,FNU+J-1,Z)*EXP(-I*Z*(3-2M))
C J=1,...,N , I**2=-1
C M - KIND OF HANKEL FUNCTION, M=1 OR 2
C N - NUMBER OF MEMBERS IN THE SEQUENCE, N.GE.1
C
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
C CY(J)=H(M,FNU+J-1,Z) OR
C CY(J)=H(M,FNU+J-1,Z)*EXP(-I*Z*(3-2M)) J=1,...,N
C DEPENDING ON KODE, I**2=-1.
C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
C NZ= 0 , NORMAL RETURN
C NZ.GT.0 , FIRST NZ COMPONENTS OF CY SET TO ZERO DUE
C TO UNDERFLOW, CY(J)=CMPLX(0.0D0,0.0D0)
C J=1,...,NZ WHEN Y.GT.0.0 AND M=1 OR
C Y.LT.0.0 AND M=2. FOR THE COMPLMENTARY
C HALF PLANES, NZ STATES ONLY THE NUMBER
C OF UNDERFLOWS.
C IERR - ERROR FLAG
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, FNU TOO
C LARGE OR CABS(Z) TOO SMALL OR BOTH
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
C ACCURACY
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
C CANCE BY ARGUMENT REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C THE COMPUTATION IS CARRIED OUT BY THE RELATION
C
C H(M,FNU,Z)=(1/MP)*EXP(-MP*FNU)*K(FNU,Z*EXP(-MP))
C MP=MM*HPI*I, MM=3-2*M, HPI=PI/2, I**2=-1
C
C FOR M=1 OR 2 WHERE THE K BESSEL FUNCTION IS COMPUTED FOR THE
C RIGHT HALF PLANE RE(Z).GE.0.0. THE K FUNCTION IS CONTINUED
C TO THE LEFT HALF PLANE BY THE RELATION
C
C K(FNU,Z*EXP(MP)) = EXP(-MP*FNU)*K(FNU,Z)-MP*I(FNU,Z)
C MP=MR*PI*I, MR=+1 OR -1, RE(Z).GT.0, I**2=-1
C
C WHERE I(FNU,Z) IS THE I BESSEL FUNCTION.
C
C EXPONENTIAL DECAY OF H(M,FNU,Z) OCCURS IN THE UPPER HALF Z
C PLANE FOR M=1 AND THE LOWER HALF Z PLANE FOR M=2. EXPONENTIAL
C GROWTH OCCURS IN THE COMPLEMENTARY HALF PLANES. SCALING
C BY EXP(-MM*Z*I) REMOVES THE EXPONENTIAL BEHAVIOR IN THE
C WHOLE Z PLANE FOR Z TO INFINITY.
C
C FOR NEGATIVE ORDERS,THE FORMULAE
C
C H(1,-FNU,Z) = H(1,FNU,Z)*CEXP( PI*FNU*I)
C H(2,-FNU,Z) = H(2,FNU,Z)*CEXP(-PI*FNU*I)
C I**2=-1
C
C CAN BE USED.
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0D-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED ZACON,ZBKNU,ZBUNK,ZUOIK,ZABS,I1MACH,D1MACH
C***END PROLOGUE ZBESH
C
C COMPLEX CY,Z,ZN,ZT,CSGN
DOUBLE PRECISION AA, ALIM, ALN, ARG, AZ, CYI, CYR, DIG, ELIM,
* FMM, FN, FNU, FNUL, HPI, RHPI, RL, R1M5, SGN, STR, TOL, UFL, ZI,
* ZNI, ZNR, ZR, ZTI, D1MACH, ZABS, BB, ASCLE, RTOL, ATOL, STI,
* CSGNR, CSGNI
INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, M,
* MM, MR, N, NN, NUF, NW, NZ, I1MACH
DIMENSION CYR(N), CYI(N)
C
DATA HPI /1.57079632679489662D0/
C
C***FIRST EXECUTABLE STATEMENT ZBESH
IERR = 0
NZ=0
IF (ZR.EQ.0.0D0 .AND. ZI.EQ.0.0D0) IERR=1
IF (FNU.LT.0.0D0) IERR=1
IF (M.LT.1 .OR. M.GT.2) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (N.LT.1) IERR=1
IF (IERR.NE.0) RETURN
NN = N
C-----------------------------------------------------------------------
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU
C-----------------------------------------------------------------------
TOL = DMAX1(D1MACH(4),1.0D-18)
K1 = I1MACH(15)
K2 = I1MACH(16)
R1M5 = D1MACH(5)
K = MIN0(IABS(K1),IABS(K2))
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
K1 = I1MACH(14) - 1
AA = R1M5*DBLE(FLOAT(K1))
DIG = DMIN1(AA,18.0D0)
AA = AA*2.303D0
ALIM = ELIM + DMAX1(-AA,-41.45D0)
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
RL = 1.2D0*DIG + 3.0D0
FN = FNU + DBLE(FLOAT(NN-1))
MM = 3 - M - M
FMM = DBLE(FLOAT(MM))
ZNR = FMM*ZI
ZNI = -FMM*ZR
C-----------------------------------------------------------------------
C TEST FOR PROPER RANGE
C-----------------------------------------------------------------------
AZ = ZABS(COMPLEX(ZR,ZI))
AA = 0.5D0/TOL
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
AA = DMIN1(AA,BB)
IF (AZ.GT.AA) GO TO 260
IF (FN.GT.AA) GO TO 260
AA = DSQRT(AA)
IF (AZ.GT.AA) IERR=3
IF (FN.GT.AA) IERR=3
C-----------------------------------------------------------------------
C OVERFLOW TEST ON THE LAST MEMBER OF THE SEQUENCE
C-----------------------------------------------------------------------
UFL = D1MACH(1)*1.0D+3
IF (AZ.LT.UFL) GO TO 230
IF (FNU.GT.FNUL) GO TO 90
IF (FN.LE.1.0D0) GO TO 70
IF (FN.GT.2.0D0) GO TO 60
IF (AZ.GT.TOL) GO TO 70
ARG = 0.5D0*AZ
ALN = -FN*DLOG(ARG)
IF (ALN.GT.ELIM) GO TO 230
GO TO 70
60 CONTINUE
CALL ZUOIK(ZNR, ZNI, FNU, KODE, 2, NN, CYR, CYI, NUF, TOL, ELIM,
* ALIM)
IF (NUF.LT.0) GO TO 230
NZ = NZ + NUF
NN = NN - NUF
C-----------------------------------------------------------------------
C HERE NN=N OR NN=0 SINCE NUF=0,NN, OR -1 ON RETURN FROM CUOIK
C IF NUF=NN, THEN CY(I)=CZERO FOR ALL I
C-----------------------------------------------------------------------
IF (NN.EQ.0) GO TO 140
70 CONTINUE
IF ((ZNR.LT.0.0D0) .OR. (ZNR.EQ.0.0D0 .AND. ZNI.LT.0.0D0 .AND.
* M.EQ.2)) GO TO 80
C-----------------------------------------------------------------------
C RIGHT HALF PLANE COMPUTATION, XN.GE.0. .AND. (XN.NE.0. .OR.
C YN.GE.0. .OR. M=1)
C-----------------------------------------------------------------------
CALL ZBKNU(ZNR, ZNI, FNU, KODE, NN, CYR, CYI, NZ, TOL, ELIM, ALIM)
GO TO 110
C-----------------------------------------------------------------------
C LEFT HALF PLANE COMPUTATION
C-----------------------------------------------------------------------
80 CONTINUE
MR = -MM
CALL ZACON(ZNR, ZNI, FNU, KODE, MR, NN, CYR, CYI, NW, RL, FNUL,
* TOL, ELIM, ALIM)
IF (NW.LT.0) GO TO 240
NZ=NW
GO TO 110
90 CONTINUE
C-----------------------------------------------------------------------
C UNIFORM ASYMPTOTIC EXPANSIONS FOR FNU.GT.FNUL
C-----------------------------------------------------------------------
MR = 0
IF ((ZNR.GE.0.0D0) .AND. (ZNR.NE.0.0D0 .OR. ZNI.GE.0.0D0 .OR.
* M.NE.2)) GO TO 100
MR = -MM
IF (ZNR.NE.0.0D0 .OR. ZNI.GE.0.0D0) GO TO 100
ZNR = -ZNR
ZNI = -ZNI
100 CONTINUE
CALL ZBUNK(ZNR, ZNI, FNU, KODE, MR, NN, CYR, CYI, NW, TOL, ELIM,
* ALIM)
IF (NW.LT.0) GO TO 240
NZ = NZ + NW
110 CONTINUE
C-----------------------------------------------------------------------
C H(M,FNU,Z) = -FMM*(I/HPI)*(ZT**FNU)*K(FNU,-Z*ZT)
C
C ZT=EXP(-FMM*HPI*I) = CMPLX(0.0,-FMM), FMM=3-2*M, M=1,2
C-----------------------------------------------------------------------
SGN = DSIGN(HPI,-FMM)
C-----------------------------------------------------------------------
C CALCULATE EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
C WHEN FNU IS LARGE
C-----------------------------------------------------------------------
INU = INT(SNGL(FNU))
INUH = INU/2
IR = INU - 2*INUH
ARG = (FNU-DBLE(FLOAT(INU-IR)))*SGN
RHPI = 1.0D0/SGN
C ZNI = RHPI*DCOS(ARG)
C ZNR = -RHPI*DSIN(ARG)
CSGNI = RHPI*DCOS(ARG)
CSGNR = -RHPI*DSIN(ARG)
IF (MOD(INUH,2).EQ.0) GO TO 120
C ZNR = -ZNR
C ZNI = -ZNI
CSGNR = -CSGNR
CSGNI = -CSGNI
120 CONTINUE
ZTI = -FMM
RTOL = 1.0D0/TOL
ASCLE = UFL*RTOL
DO 130 I=1,NN
C STR = CYR(I)*ZNR - CYI(I)*ZNI
C CYI(I) = CYR(I)*ZNI + CYI(I)*ZNR
C CYR(I) = STR
C STR = -ZNI*ZTI
C ZNI = ZNR*ZTI
C ZNR = STR
AA = CYR(I)
BB = CYI(I)
ATOL = 1.0D0
IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 135
AA = AA*RTOL
BB = BB*RTOL
ATOL = TOL
135 CONTINUE
STR = AA*CSGNR - BB*CSGNI
STI = AA*CSGNI + BB*CSGNR
CYR(I) = STR*ATOL
CYI(I) = STI*ATOL
STR = -CSGNI*ZTI
CSGNI = CSGNR*ZTI
CSGNR = STR
130 CONTINUE
RETURN
140 CONTINUE
IF (ZNR.LT.0.0D0) GO TO 230
RETURN
230 CONTINUE
NZ=0
IERR=2
RETURN
240 CONTINUE
IF(NW.EQ.(-1)) GO TO 230
NZ=0
IERR=5
RETURN
260 CONTINUE
NZ=0
IERR=4
RETURN
END

View file

@ -1,269 +0,0 @@
SUBROUTINE ZBESI(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
C***BEGIN PROLOGUE ZBESI
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS I-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
C MODIFIED BESSEL FUNCTION OF THE FIRST KIND
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE I-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C ON KODE=1, ZBESI COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
C BESSEL FUNCTIONS CY(J)=I(FNU+J-1,Z) FOR REAL, NONNEGATIVE
C ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z IN THE CUT PLANE
C -PI.LT.ARG(Z).LE.PI. ON KODE=2, ZBESI RETURNS THE SCALED
C FUNCTIONS
C
C CY(J)=EXP(-ABS(X))*I(FNU+J-1,Z) J = 1,...,N , X=REAL(Z)
C
C WITH THE EXPONENTIAL GROWTH REMOVED IN BOTH THE LEFT AND
C RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
C ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
C (REF. 1).
C
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI), -PI.LT.ARG(Z).LE.PI
C FNU - ORDER OF INITIAL I FUNCTION, FNU.GE.0.0D0
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 RETURNS
C CY(J)=I(FNU+J-1,Z), J=1,...,N
C = 2 RETURNS
C CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)), J=1,...,N
C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
C
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
C CY(J)=I(FNU+J-1,Z) OR
C CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)) J=1,...,N
C DEPENDING ON KODE, X=REAL(Z)
C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
C NZ= 0 , NORMAL RETURN
C NZ.GT.0 , LAST NZ COMPONENTS OF CY SET TO ZERO
C TO UNDERFLOW, CY(J)=CMPLX(0.0D0,0.0D0)
C J = N-NZ+1,...,N
C IERR - ERROR FLAG
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, REAL(Z) TOO
C LARGE ON KODE=1
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
C ACCURACY
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
C CANCE BY ARGUMENT REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C THE COMPUTATION IS CARRIED OUT BY THE POWER SERIES FOR
C SMALL CABS(Z), THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z),
C THE MILLER ALGORITHM NORMALIZED BY THE WRONSKIAN AND A
C NEUMANN SERIES FOR IMTERMEDIATE MAGNITUDES, AND THE
C UNIFORM ASYMPTOTIC EXPANSIONS FOR I(FNU,Z) AND J(FNU,Z)
C FOR LARGE ORDERS. BACKWARD RECURRENCE IS USED TO GENERATE
C SEQUENCES OR REDUCE ORDERS WHEN NECESSARY.
C
C THE CALCULATIONS ABOVE ARE DONE IN THE RIGHT HALF PLANE AND
C CONTINUED INTO THE LEFT HALF PLANE BY THE FORMULA
C
C I(FNU,Z*EXP(M*PI)) = EXP(M*PI*FNU)*I(FNU,Z) REAL(Z).GT.0.0
C M = +I OR -I, I**2=-1
C
C FOR NEGATIVE ORDERS,THE FORMULA
C
C I(-FNU,Z) = I(FNU,Z) + (2/PI)*SIN(PI*FNU)*K(FNU,Z)
C
C CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
C THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
C INTEGER,THE MAGNITUDE OF I(-FNU,Z)=I(FNU,Z) IS A LARGE
C NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
C K(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
C TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
C UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
C OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
C LARGE MEANS FNU.GT.CABS(Z).
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED ZBINU,I1MACH,D1MACH
C***END PROLOGUE ZBESI
C COMPLEX CONE,CSGN,CW,CY,CZERO,Z,ZN
DOUBLE PRECISION AA, ALIM, ARG, CONEI, CONER, CSGNI, CSGNR, CYI,
* CYR, DIG, ELIM, FNU, FNUL, PI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR,
* ZR, D1MACH, AZ, BB, FN, ZABS, ASCLE, RTOL, ATOL, STI
INTEGER I, IERR, INU, K, KODE, K1,K2,N,NZ,NN, I1MACH
DIMENSION CYR(N), CYI(N)
DATA PI /3.14159265358979324D0/
DATA CONER, CONEI /1.0D0,0.0D0/
C
C***FIRST EXECUTABLE STATEMENT ZBESI
IERR = 0
NZ=0
IF (FNU.LT.0.0D0) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (N.LT.1) IERR=1
IF (IERR.NE.0) RETURN
C-----------------------------------------------------------------------
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
C-----------------------------------------------------------------------
TOL = DMAX1(D1MACH(4),1.0D-18)
K1 = I1MACH(15)
K2 = I1MACH(16)
R1M5 = D1MACH(5)
K = MIN0(IABS(K1),IABS(K2))
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
K1 = I1MACH(14) - 1
AA = R1M5*DBLE(FLOAT(K1))
DIG = DMIN1(AA,18.0D0)
AA = AA*2.303D0
ALIM = ELIM + DMAX1(-AA,-41.45D0)
RL = 1.2D0*DIG + 3.0D0
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
C-----------------------------------------------------------------------------
C TEST FOR PROPER RANGE
C-----------------------------------------------------------------------
AZ = ZABS(COMPLEX(ZR,ZI))
FN = FNU+DBLE(FLOAT(N-1))
AA = 0.5D0/TOL
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
AA = DMIN1(AA,BB)
IF (AZ.GT.AA) GO TO 260
IF (FN.GT.AA) GO TO 260
AA = DSQRT(AA)
IF (AZ.GT.AA) IERR=3
IF (FN.GT.AA) IERR=3
ZNR = ZR
ZNI = ZI
CSGNR = CONER
CSGNI = CONEI
IF (ZR.GE.0.0D0) GO TO 40
ZNR = -ZR
ZNI = -ZI
C-----------------------------------------------------------------------
C CALCULATE CSGN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
C WHEN FNU IS LARGE
C-----------------------------------------------------------------------
INU = INT(SNGL(FNU))
ARG = (FNU-DBLE(FLOAT(INU)))*PI
IF (ZI.LT.0.0D0) ARG = -ARG
CSGNR = DCOS(ARG)
CSGNI = DSIN(ARG)
IF (MOD(INU,2).EQ.0) GO TO 40
CSGNR = -CSGNR
CSGNI = -CSGNI
40 CONTINUE
CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
* ELIM, ALIM)
IF (NZ.LT.0) GO TO 120
IF (ZR.GE.0.0D0) RETURN
C-----------------------------------------------------------------------
C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE
C-----------------------------------------------------------------------
NN = N - NZ
IF (NN.EQ.0) RETURN
RTOL = 1.0D0/TOL
ASCLE = D1MACH(1)*RTOL*1.0D+3
DO 50 I=1,NN
C STR = CYR(I)*CSGNR - CYI(I)*CSGNI
C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
C CYR(I) = STR
AA = CYR(I)
BB = CYI(I)
ATOL = 1.0D0
IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55
AA = AA*RTOL
BB = BB*RTOL
ATOL = TOL
55 CONTINUE
STR = AA*CSGNR - BB*CSGNI
STI = AA*CSGNI + BB*CSGNR
CYR(I) = STR*ATOL
CYI(I) = STI*ATOL
CSGNR = -CSGNR
CSGNI = -CSGNI
50 CONTINUE
RETURN
120 CONTINUE
IF(NZ.EQ.(-2)) GO TO 130
NZ = 0
IERR=2
RETURN
130 CONTINUE
NZ=0
IERR=5
RETURN
260 CONTINUE
NZ=0
IERR=4
RETURN
END

View file

@ -1,266 +0,0 @@
SUBROUTINE ZBESJ(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
C***BEGIN PROLOGUE ZBESJ
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS J-BESSEL FUNCTION,BESSEL FUNCTION OF COMPLEX ARGUMENT,
C BESSEL FUNCTION OF FIRST KIND
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE THE J-BESSEL FUNCTION OF A COMPLEX ARGUMENT
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C ON KODE=1, CBESJ COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
C BESSEL FUNCTIONS CY(I)=J(FNU+I-1,Z) FOR REAL, NONNEGATIVE
C ORDERS FNU+I-1, I=1,...,N AND COMPLEX Z IN THE CUT PLANE
C -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESJ RETURNS THE SCALED
C FUNCTIONS
C
C CY(I)=EXP(-ABS(Y))*J(FNU+I-1,Z) I = 1,...,N , Y=AIMAG(Z)
C
C WHICH REMOVE THE EXPONENTIAL GROWTH IN BOTH THE UPPER AND
C LOWER HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
C ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
C (REF. 1).
C
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI), -PI.LT.ARG(Z).LE.PI
C FNU - ORDER OF INITIAL J FUNCTION, FNU.GE.0.0D0
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 RETURNS
C CY(I)=J(FNU+I-1,Z), I=1,...,N
C = 2 RETURNS
C CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y)), I=1,...,N
C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
C
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
C CY(I)=J(FNU+I-1,Z) OR
C CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y)) I=1,...,N
C DEPENDING ON KODE, Y=AIMAG(Z).
C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
C NZ= 0 , NORMAL RETURN
C NZ.GT.0 , LAST NZ COMPONENTS OF CY SET ZERO DUE
C TO UNDERFLOW, CY(I)=CMPLX(0.0D0,0.0D0),
C I = N-NZ+1,...,N
C IERR - ERROR FLAG
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, AIMAG(Z)
C TOO LARGE ON KODE=1
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
C ACCURACY
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
C CANCE BY ARGUMENT REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C THE COMPUTATION IS CARRIED OUT BY THE FORMULA
C
C J(FNU,Z)=EXP( FNU*PI*I/2)*I(FNU,-I*Z) AIMAG(Z).GE.0.0
C
C J(FNU,Z)=EXP(-FNU*PI*I/2)*I(FNU, I*Z) AIMAG(Z).LT.0.0
C
C WHERE I**2 = -1 AND I(FNU,Z) IS THE I BESSEL FUNCTION.
C
C FOR NEGATIVE ORDERS,THE FORMULA
C
C J(-FNU,Z) = J(FNU,Z)*COS(PI*FNU) - Y(FNU,Z)*SIN(PI*FNU)
C
C CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
C THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
C INTEGER,THE MAGNITUDE OF J(-FNU,Z)=J(FNU,Z)*COS(PI*FNU) IS A
C LARGE NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
C Y(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
C TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
C UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
C OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
C LARGE MEANS FNU.GT.CABS(Z).
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED ZBINU,I1MACH,D1MACH
C***END PROLOGUE ZBESJ
C
C COMPLEX CI,CSGN,CY,Z,ZN
DOUBLE PRECISION AA, ALIM, ARG, CII, CSGNI, CSGNR, CYI, CYR, DIG,
* ELIM, FNU, FNUL, HPI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR, ZR,
* D1MACH, BB, FN, AZ, ZABS, ASCLE, RTOL, ATOL, STI
INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, N, NL, NZ, I1MACH
DIMENSION CYR(N), CYI(N)
DATA HPI /1.57079632679489662D0/
C
C***FIRST EXECUTABLE STATEMENT ZBESJ
IERR = 0
NZ=0
IF (FNU.LT.0.0D0) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (N.LT.1) IERR=1
IF (IERR.NE.0) RETURN
C-----------------------------------------------------------------------
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
C-----------------------------------------------------------------------
TOL = DMAX1(D1MACH(4),1.0D-18)
K1 = I1MACH(15)
K2 = I1MACH(16)
R1M5 = D1MACH(5)
K = MIN0(IABS(K1),IABS(K2))
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
K1 = I1MACH(14) - 1
AA = R1M5*DBLE(FLOAT(K1))
DIG = DMIN1(AA,18.0D0)
AA = AA*2.303D0
ALIM = ELIM + DMAX1(-AA,-41.45D0)
RL = 1.2D0*DIG + 3.0D0
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
C-----------------------------------------------------------------------
C TEST FOR PROPER RANGE
C-----------------------------------------------------------------------
AZ = ZABS(COMPLEX(ZR,ZI))
FN = FNU+DBLE(FLOAT(N-1))
AA = 0.5D0/TOL
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
AA = DMIN1(AA,BB)
IF (AZ.GT.AA) GO TO 260
IF (FN.GT.AA) GO TO 260
AA = DSQRT(AA)
IF (AZ.GT.AA) IERR=3
IF (FN.GT.AA) IERR=3
C-----------------------------------------------------------------------
C CALCULATE CSGN=EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
C WHEN FNU IS LARGE
C-----------------------------------------------------------------------
CII = 1.0D0
INU = INT(SNGL(FNU))
INUH = INU/2
IR = INU - 2*INUH
ARG = (FNU-DBLE(FLOAT(INU-IR)))*HPI
CSGNR = DCOS(ARG)
CSGNI = DSIN(ARG)
IF (MOD(INUH,2).EQ.0) GO TO 40
CSGNR = -CSGNR
CSGNI = -CSGNI
40 CONTINUE
C-----------------------------------------------------------------------
C ZN IS IN THE RIGHT HALF PLANE
C-----------------------------------------------------------------------
ZNR = ZI
ZNI = -ZR
IF (ZI.GE.0.0D0) GO TO 50
ZNR = -ZNR
ZNI = -ZNI
CSGNI = -CSGNI
CII = -CII
50 CONTINUE
CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
* ELIM, ALIM)
IF (NZ.LT.0) GO TO 130
NL = N - NZ
IF (NL.EQ.0) RETURN
RTOL = 1.0D0/TOL
ASCLE = D1MACH(1)*RTOL*1.0D+3
DO 60 I=1,NL
C STR = CYR(I)*CSGNR - CYI(I)*CSGNI
C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
C CYR(I) = STR
AA = CYR(I)
BB = CYI(I)
ATOL = 1.0D0
IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55
AA = AA*RTOL
BB = BB*RTOL
ATOL = TOL
55 CONTINUE
STR = AA*CSGNR - BB*CSGNI
STI = AA*CSGNI + BB*CSGNR
CYR(I) = STR*ATOL
CYI(I) = STI*ATOL
STR = -CSGNI*CII
CSGNI = CSGNR*CII
CSGNR = STR
60 CONTINUE
RETURN
130 CONTINUE
IF(NZ.EQ.(-2)) GO TO 140
NZ = 0
IERR = 2
RETURN
140 CONTINUE
NZ=0
IERR=5
RETURN
260 CONTINUE
NZ=0
IERR=4
RETURN
END

View file

@ -1,281 +0,0 @@
SUBROUTINE ZBESK(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
C***BEGIN PROLOGUE ZBESK
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS K-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
C MODIFIED BESSEL FUNCTION OF THE SECOND KIND,
C BESSEL FUNCTION OF THE THIRD KIND
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE K-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C
C ON KODE=1, CBESK COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
C BESSEL FUNCTIONS CY(J)=K(FNU+J-1,Z) FOR REAL, NONNEGATIVE
C ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z.NE.CMPLX(0.0,0.0)
C IN THE CUT PLANE -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESK
C RETURNS THE SCALED K FUNCTIONS,
C
C CY(J)=EXP(Z)*K(FNU+J-1,Z) , J=1,...,N,
C
C WHICH REMOVE THE EXPONENTIAL BEHAVIOR IN BOTH THE LEFT AND
C RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND
C NOTATION ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL
C FUNCTIONS (REF. 1).
C
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0),
C -PI.LT.ARG(Z).LE.PI
C FNU - ORDER OF INITIAL K FUNCTION, FNU.GE.0.0D0
C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 RETURNS
C CY(I)=K(FNU+I-1,Z), I=1,...,N
C = 2 RETURNS
C CY(I)=K(FNU+I-1,Z)*EXP(Z), I=1,...,N
C
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
C CY(I)=K(FNU+I-1,Z), I=1,...,N OR
C CY(I)=K(FNU+I-1,Z)*EXP(Z), I=1,...,N
C DEPENDING ON KODE
C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW.
C NZ= 0 , NORMAL RETURN
C NZ.GT.0 , FIRST NZ COMPONENTS OF CY SET TO ZERO DUE
C TO UNDERFLOW, CY(I)=CMPLX(0.0D0,0.0D0),
C I=1,...,N WHEN X.GE.0.0. WHEN X.LT.0.0
C NZ STATES ONLY THE NUMBER OF UNDERFLOWS
C IN THE SEQUENCE.
C
C IERR - ERROR FLAG
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, FNU IS
C TOO LARGE OR CABS(Z) IS TOO SMALL OR BOTH
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
C ACCURACY
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
C CANCE BY ARGUMENT REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C EQUATIONS OF THE REFERENCE ARE IMPLEMENTED FOR SMALL ORDERS
C DNU AND DNU+1.0 IN THE RIGHT HALF PLANE X.GE.0.0. FORWARD
C RECURRENCE GENERATES HIGHER ORDERS. K IS CONTINUED TO THE LEFT
C HALF PLANE BY THE RELATION
C
C K(FNU,Z*EXP(MP)) = EXP(-MP*FNU)*K(FNU,Z)-MP*I(FNU,Z)
C MP=MR*PI*I, MR=+1 OR -1, RE(Z).GT.0, I**2=-1
C
C WHERE I(FNU,Z) IS THE I BESSEL FUNCTION.
C
C FOR LARGE ORDERS, FNU.GT.FNUL, THE K FUNCTION IS COMPUTED
C BY MEANS OF ITS UNIFORM ASYMPTOTIC EXPANSIONS.
C
C FOR NEGATIVE ORDERS, THE FORMULA
C
C K(-FNU,Z) = K(FNU,Z)
C
C CAN BE USED.
C
C CBESK ASSUMES THAT A SIGNIFICANT DIGIT SINH(X) FUNCTION IS
C AVAILABLE.
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983.
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED ZACON,ZBKNU,ZBUNK,ZUOIK,ZABS,I1MACH,D1MACH
C***END PROLOGUE ZBESK
C
C COMPLEX CY,Z
DOUBLE PRECISION AA, ALIM, ALN, ARG, AZ, CYI, CYR, DIG, ELIM, FN,
* FNU, FNUL, RL, R1M5, TOL, UFL, ZI, ZR, D1MACH, ZABS, BB
INTEGER IERR, K, KODE, K1, K2, MR, N, NN, NUF, NW, NZ, I1MACH
DIMENSION CYR(N), CYI(N)
C***FIRST EXECUTABLE STATEMENT ZBESK
IERR = 0
NZ=0
IF (ZI.EQ.0.0E0 .AND. ZR.EQ.0.0E0) IERR=1
IF (FNU.LT.0.0D0) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (N.LT.1) IERR=1
IF (IERR.NE.0) RETURN
NN = N
C-----------------------------------------------------------------------
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU
C-----------------------------------------------------------------------
TOL = DMAX1(D1MACH(4),1.0D-18)
K1 = I1MACH(15)
K2 = I1MACH(16)
R1M5 = D1MACH(5)
K = MIN0(IABS(K1),IABS(K2))
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
K1 = I1MACH(14) - 1
AA = R1M5*DBLE(FLOAT(K1))
DIG = DMIN1(AA,18.0D0)
AA = AA*2.303D0
ALIM = ELIM + DMAX1(-AA,-41.45D0)
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
RL = 1.2D0*DIG + 3.0D0
C-----------------------------------------------------------------------------
C TEST FOR PROPER RANGE
C-----------------------------------------------------------------------
AZ = ZABS(COMPLEX(ZR,ZI))
FN = FNU + DBLE(FLOAT(NN-1))
AA = 0.5D0/TOL
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
AA = DMIN1(AA,BB)
IF (AZ.GT.AA) GO TO 260
IF (FN.GT.AA) GO TO 260
AA = DSQRT(AA)
IF (AZ.GT.AA) IERR=3
IF (FN.GT.AA) IERR=3
C-----------------------------------------------------------------------
C OVERFLOW TEST ON THE LAST MEMBER OF THE SEQUENCE
C-----------------------------------------------------------------------
C UFL = DEXP(-ELIM)
UFL = D1MACH(1)*1.0D+3
IF (AZ.LT.UFL) GO TO 180
IF (FNU.GT.FNUL) GO TO 80
IF (FN.LE.1.0D0) GO TO 60
IF (FN.GT.2.0D0) GO TO 50
IF (AZ.GT.TOL) GO TO 60
ARG = 0.5D0*AZ
ALN = -FN*DLOG(ARG)
IF (ALN.GT.ELIM) GO TO 180
GO TO 60
50 CONTINUE
CALL ZUOIK(ZR, ZI, FNU, KODE, 2, NN, CYR, CYI, NUF, TOL, ELIM,
* ALIM)
IF (NUF.LT.0) GO TO 180
NZ = NZ + NUF
NN = NN - NUF
C-----------------------------------------------------------------------
C HERE NN=N OR NN=0 SINCE NUF=0,NN, OR -1 ON RETURN FROM CUOIK
C IF NUF=NN, THEN CY(I)=CZERO FOR ALL I
C-----------------------------------------------------------------------
IF (NN.EQ.0) GO TO 100
60 CONTINUE
IF (ZR.LT.0.0D0) GO TO 70
C-----------------------------------------------------------------------
C RIGHT HALF PLANE COMPUTATION, REAL(Z).GE.0.
C-----------------------------------------------------------------------
CALL ZBKNU(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, TOL, ELIM, ALIM)
IF (NW.LT.0) GO TO 200
NZ=NW
RETURN
C-----------------------------------------------------------------------
C LEFT HALF PLANE COMPUTATION
C PI/2.LT.ARG(Z).LE.PI AND -PI.LT.ARG(Z).LT.-PI/2.
C-----------------------------------------------------------------------
70 CONTINUE
IF (NZ.NE.0) GO TO 180
MR = 1
IF (ZI.LT.0.0D0) MR = -1
CALL ZACON(ZR, ZI, FNU, KODE, MR, NN, CYR, CYI, NW, RL, FNUL,
* TOL, ELIM, ALIM)
IF (NW.LT.0) GO TO 200
NZ=NW
RETURN
C-----------------------------------------------------------------------
C UNIFORM ASYMPTOTIC EXPANSIONS FOR FNU.GT.FNUL
C-----------------------------------------------------------------------
80 CONTINUE
MR = 0
IF (ZR.GE.0.0D0) GO TO 90
MR = 1
IF (ZI.LT.0.0D0) MR = -1
90 CONTINUE
CALL ZBUNK(ZR, ZI, FNU, KODE, MR, NN, CYR, CYI, NW, TOL, ELIM,
* ALIM)
IF (NW.LT.0) GO TO 200
NZ = NZ + NW
RETURN
100 CONTINUE
IF (ZR.LT.0.0D0) GO TO 180
RETURN
180 CONTINUE
NZ = 0
IERR=2
RETURN
200 CONTINUE
IF(NW.EQ.(-1)) GO TO 180
NZ=0
IERR=5
RETURN
260 CONTINUE
NZ=0
IERR=4
RETURN
END

View file

@ -1,244 +0,0 @@
SUBROUTINE ZBESY(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, CWRKR, CWRKI,
* IERR)
C***BEGIN PROLOGUE ZBESY
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS Y-BESSEL FUNCTION,BESSEL FUNCTION OF COMPLEX ARGUMENT,
C BESSEL FUNCTION OF SECOND KIND
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE THE Y-BESSEL FUNCTION OF A COMPLEX ARGUMENT
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C
C ON KODE=1, CBESY COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
C BESSEL FUNCTIONS CY(I)=Y(FNU+I-1,Z) FOR REAL, NONNEGATIVE
C ORDERS FNU+I-1, I=1,...,N AND COMPLEX Z IN THE CUT PLANE
C -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESY RETURNS THE SCALED
C FUNCTIONS
C
C CY(I)=EXP(-ABS(Y))*Y(FNU+I-1,Z) I = 1,...,N , Y=AIMAG(Z)
C
C WHICH REMOVE THE EXPONENTIAL GROWTH IN BOTH THE UPPER AND
C LOWER HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
C ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
C (REF. 1).
C
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0),
C -PI.LT.ARG(Z).LE.PI
C FNU - ORDER OF INITIAL Y FUNCTION, FNU.GE.0.0D0
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 RETURNS
C CY(I)=Y(FNU+I-1,Z), I=1,...,N
C = 2 RETURNS
C CY(I)=Y(FNU+I-1,Z)*EXP(-ABS(Y)), I=1,...,N
C WHERE Y=AIMAG(Z)
C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
C CWRKR, - DOUBLE PRECISION WORK VECTORS OF DIMENSION AT
C CWRKI AT LEAST N
C
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
C CY(I)=Y(FNU+I-1,Z) OR
C CY(I)=Y(FNU+I-1,Z)*EXP(-ABS(Y)) I=1,...,N
C DEPENDING ON KODE.
C NZ - NZ=0 , A NORMAL RETURN
C NZ.GT.0 , NZ COMPONENTS OF CY SET TO ZERO DUE TO
C UNDERFLOW (GENERALLY ON KODE=2)
C IERR - ERROR FLAG
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, FNU IS
C TOO LARGE OR CABS(Z) IS TOO SMALL OR BOTH
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
C ACCURACY
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
C CANCE BY ARGUMENT REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C THE COMPUTATION IS CARRIED OUT BY THE FORMULA
C
C Y(FNU,Z)=0.5*(H(1,FNU,Z)-H(2,FNU,Z))/I
C
C WHERE I**2 = -1 AND THE HANKEL BESSEL FUNCTIONS H(1,FNU,Z)
C AND H(2,FNU,Z) ARE CALCULATED IN CBESH.
C
C FOR NEGATIVE ORDERS,THE FORMULA
C
C Y(-FNU,Z) = Y(FNU,Z)*COS(PI*FNU) + J(FNU,Z)*SIN(PI*FNU)
C
C CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO HALF ODD
C INTEGERS THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE
C POSITIVE HALF ODD INTEGER,THE MAGNITUDE OF Y(-FNU,Z)=J(FNU,Z)*
C SIN(PI*FNU) IS A LARGE NEGATIVE POWER OF TEN. BUT WHEN FNU IS
C NOT A HALF ODD INTEGER, Y(FNU,Z) DOMINATES IN MAGNITUDE WITH A
C LARGE POSITIVE POWER OF TEN AND THE MOST THAT THE SECOND TERM
C CAN BE REDUCED IS BY UNIT ROUNDOFF FROM THE COEFFICIENT. THUS,
C WIDE CHANGES CAN OCCUR WITHIN UNIT ROUNDOFF OF A LARGE HALF
C ODD INTEGER. HERE, LARGE MEANS FNU.GT.CABS(Z).
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED ZBESH,I1MACH,D1MACH
C***END PROLOGUE ZBESY
C
C COMPLEX CWRK,CY,C1,C2,EX,HCI,Z,ZU,ZV
DOUBLE PRECISION CWRKI, CWRKR, CYI, CYR, C1I, C1R, C2I, C2R,
* ELIM, EXI, EXR, EY, FNU, HCII, STI, STR, TAY, ZI, ZR, DEXP,
* D1MACH, ASCLE, RTOL, ATOL, AA, BB, TOL
INTEGER I, IERR, K, KODE, K1, K2, N, NZ, NZ1, NZ2, I1MACH
DIMENSION CYR(N), CYI(N), CWRKR(N), CWRKI(N)
C***FIRST EXECUTABLE STATEMENT ZBESY
IERR = 0
NZ=0
IF (ZR.EQ.0.0D0 .AND. ZI.EQ.0.0D0) IERR=1
IF (FNU.LT.0.0D0) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (N.LT.1) IERR=1
IF (IERR.NE.0) RETURN
HCII = 0.5D0
CALL ZBESH(ZR, ZI, FNU, KODE, 1, N, CYR, CYI, NZ1, IERR)
IF (IERR.NE.0.AND.IERR.NE.3) GO TO 170
CALL ZBESH(ZR, ZI, FNU, KODE, 2, N, CWRKR, CWRKI, NZ2, IERR)
IF (IERR.NE.0.AND.IERR.NE.3) GO TO 170
NZ = MIN0(NZ1,NZ2)
IF (KODE.EQ.2) GO TO 60
DO 50 I=1,N
STR = CWRKR(I) - CYR(I)
STI = CWRKI(I) - CYI(I)
CYR(I) = -STI*HCII
CYI(I) = STR*HCII
50 CONTINUE
RETURN
60 CONTINUE
TOL = DMAX1(D1MACH(4),1.0D-18)
K1 = I1MACH(15)
K2 = I1MACH(16)
K = MIN0(IABS(K1),IABS(K2))
R1M5 = D1MACH(5)
C-----------------------------------------------------------------------
C ELIM IS THE APPROXIMATE EXPONENTIAL UNDER- AND OVERFLOW LIMIT
C-----------------------------------------------------------------------
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
EXR = DCOS(ZR)
EXI = DSIN(ZR)
EY = 0.0D0
TAY = DABS(ZI+ZI)
IF (TAY.LT.ELIM) EY = DEXP(-TAY)
IF (ZI.LT.0.0D0) GO TO 90
C1R = EXR*EY
C1I = EXI*EY
C2R = EXR
C2I = -EXI
70 CONTINUE
NZ = 0
RTOL = 1.0D0/TOL
ASCLE = D1MACH(1)*RTOL*1.0D+3
DO 80 I=1,N
C STR = C1R*CYR(I) - C1I*CYI(I)
C STI = C1R*CYI(I) + C1I*CYR(I)
C STR = -STR + C2R*CWRKR(I) - C2I*CWRKI(I)
C STI = -STI + C2R*CWRKI(I) + C2I*CWRKR(I)
C CYR(I) = -STI*HCII
C CYI(I) = STR*HCII
AA = CWRKR(I)
BB = CWRKI(I)
ATOL = 1.0D0
IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 75
AA = AA*RTOL
BB = BB*RTOL
ATOL = TOL
75 CONTINUE
STR = (AA*C2R - BB*C2I)*ATOL
STI = (AA*C2I + BB*C2R)*ATOL
AA = CYR(I)
BB = CYI(I)
ATOL = 1.0D0
IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 85
AA = AA*RTOL
BB = BB*RTOL
ATOL = TOL
85 CONTINUE
STR = STR - (AA*C1R - BB*C1I)*ATOL
STI = STI - (AA*C1I + BB*C1R)*ATOL
CYR(I) = -STI*HCII
CYI(I) = STR*HCII
IF (STR.EQ.0.0D0 .AND. STI.EQ.0.0D0 .AND. EY.EQ.0.0D0) NZ = NZ
* + 1
80 CONTINUE
RETURN
90 CONTINUE
C1R = EXR
C1I = EXI
C2R = EXR*EY
C2I = -EXI*EY
GO TO 70
170 CONTINUE
NZ = 0
RETURN
END

View file

@ -1,110 +0,0 @@
SUBROUTINE ZBINU(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL,
* TOL, ELIM, ALIM)
C***BEGIN PROLOGUE ZBINU
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZAIRY,ZBIRY
C
C ZBINU COMPUTES THE I FUNCTION IN THE RIGHT HALF Z PLANE
C
C***ROUTINES CALLED ZABS,ZASYI,ZBUNI,ZMLRI,ZSERI,ZUOIK,ZWRSK
C***END PROLOGUE ZBINU
DOUBLE PRECISION ALIM, AZ, CWI, CWR, CYI, CYR, DFNU, ELIM, FNU,
* FNUL, RL, TOL, ZEROI, ZEROR, ZI, ZR, ZABS
INTEGER I, INW, KODE, N, NLAST, NN, NUI, NW, NZ
DIMENSION CYR(N), CYI(N), CWR(2), CWI(2)
DATA ZEROR,ZEROI / 0.0D0, 0.0D0 /
C
NZ = 0
AZ = ZABS(COMPLEX(ZR,ZI))
NN = N
DFNU = FNU + DBLE(FLOAT(N-1))
IF (AZ.LE.2.0D0) GO TO 10
IF (AZ*AZ*0.25D0.GT.DFNU+1.0D0) GO TO 20
10 CONTINUE
C-----------------------------------------------------------------------
C POWER SERIES
C-----------------------------------------------------------------------
CALL ZSERI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, TOL, ELIM, ALIM)
INW = IABS(NW)
NZ = NZ + INW
NN = NN - INW
IF (NN.EQ.0) RETURN
IF (NW.GE.0) GO TO 120
DFNU = FNU + DBLE(FLOAT(NN-1))
20 CONTINUE
IF (AZ.LT.RL) GO TO 40
IF (DFNU.LE.1.0D0) GO TO 30
IF (AZ+AZ.LT.DFNU*DFNU) GO TO 50
C-----------------------------------------------------------------------
C ASYMPTOTIC EXPANSION FOR LARGE Z
C-----------------------------------------------------------------------
30 CONTINUE
CALL ZASYI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, RL, TOL, ELIM,
* ALIM)
IF (NW.LT.0) GO TO 130
GO TO 120
40 CONTINUE
IF (DFNU.LE.1.0D0) GO TO 70
50 CONTINUE
C-----------------------------------------------------------------------
C OVERFLOW AND UNDERFLOW TEST ON I SEQUENCE FOR MILLER ALGORITHM
C-----------------------------------------------------------------------
CALL ZUOIK(ZR, ZI, FNU, KODE, 1, NN, CYR, CYI, NW, TOL, ELIM,
* ALIM)
IF (NW.LT.0) GO TO 130
NZ = NZ + NW
NN = NN - NW
IF (NN.EQ.0) RETURN
DFNU = FNU+DBLE(FLOAT(NN-1))
IF (DFNU.GT.FNUL) GO TO 110
IF (AZ.GT.FNUL) GO TO 110
60 CONTINUE
IF (AZ.GT.RL) GO TO 80
70 CONTINUE
C-----------------------------------------------------------------------
C MILLER ALGORITHM NORMALIZED BY THE SERIES
C-----------------------------------------------------------------------
CALL ZMLRI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, TOL)
IF(NW.LT.0) GO TO 130
GO TO 120
80 CONTINUE
C-----------------------------------------------------------------------
C MILLER ALGORITHM NORMALIZED BY THE WRONSKIAN
C-----------------------------------------------------------------------
C-----------------------------------------------------------------------
C OVERFLOW TEST ON K FUNCTIONS USED IN WRONSKIAN
C-----------------------------------------------------------------------
CALL ZUOIK(ZR, ZI, FNU, KODE, 2, 2, CWR, CWI, NW, TOL, ELIM,
* ALIM)
IF (NW.GE.0) GO TO 100
NZ = NN
DO 90 I=1,NN
CYR(I) = ZEROR
CYI(I) = ZEROI
90 CONTINUE
RETURN
100 CONTINUE
IF (NW.GT.0) GO TO 130
CALL ZWRSK(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, CWR, CWI, TOL,
* ELIM, ALIM)
IF (NW.LT.0) GO TO 130
GO TO 120
110 CONTINUE
C-----------------------------------------------------------------------
C INCREMENT FNU+NN-1 UP TO FNUL, COMPUTE AND RECUR BACKWARD
C-----------------------------------------------------------------------
NUI = INT(SNGL(FNUL-DFNU)) + 1
NUI = MAX0(NUI,0)
CALL ZBUNI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, NUI, NLAST, FNUL,
* TOL, ELIM, ALIM)
IF (NW.LT.0) GO TO 130
NZ = NZ + NW
IF (NLAST.EQ.0) GO TO 120
NN = NLAST
GO TO 60
120 CONTINUE
RETURN
130 CONTINUE
NZ = -1
IF(NW.EQ.(-2)) NZ=-2
RETURN
END

View file

@ -1,364 +0,0 @@
SUBROUTINE ZBIRY(ZR, ZI, ID, KODE, BIR, BII, IERR)
C***BEGIN PROLOGUE ZBIRY
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE AIRY FUNCTIONS BI(Z) AND DBI(Z) FOR COMPLEX Z
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C ON KODE=1, CBIRY COMPUTES THE COMPLEX AIRY FUNCTION BI(Z) OR
C ITS DERIVATIVE DBI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
C KODE=2, A SCALING OPTION CEXP(-AXZTA)*BI(Z) OR CEXP(-AXZTA)*
C DBI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL BEHAVIOR IN
C BOTH THE LEFT AND RIGHT HALF PLANES WHERE
C ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA) AND AXZTA=ABS(XZTA).
C DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
C MATHEMATICAL FUNCTIONS (REF. 1).
C
C INPUT ZR,ZI ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI)
C ID - ORDER OF DERIVATIVE, ID=0 OR ID=1
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 RETURNS
C BI=BI(Z) ON ID=0 OR
C BI=DBI(Z)/DZ ON ID=1
C = 2 RETURNS
C BI=CEXP(-AXZTA)*BI(Z) ON ID=0 OR
C BI=CEXP(-AXZTA)*DBI(Z)/DZ ON ID=1 WHERE
C ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA)
C AND AXZTA=ABS(XZTA)
C
C OUTPUT BIR,BII ARE DOUBLE PRECISION
C BIR,BII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
C KODE
C IERR - ERROR FLAG
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, REAL(Z)
C TOO LARGE ON KODE=1
C IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED
C LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
C PRODUCE LESS THAN HALF OF MACHINE ACCURACY
C IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION
C COMPLETE LOSS OF ACCURACY BY ARGUMENT
C REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C BI AND DBI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE I BESSEL
C FUNCTIONS BY
C
C BI(Z)=C*SQRT(Z)*( I(-1/3,ZTA) + I(1/3,ZTA) )
C DBI(Z)=C * Z * ( I(-2/3,ZTA) + I(2/3,ZTA) )
C C=1.0/SQRT(3.0)
C ZTA=(2/3)*Z**(3/2)
C
C WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
C OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
C THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
C THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
C FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
C ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
C FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
C LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
C MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
C AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
C PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
C PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
C ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
C NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
C DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
C EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
C NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
C PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
C MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED ZBINU,ZABS,ZDIV,ZSQRT,D1MACH,I1MACH
C***END PROLOGUE ZBIRY
C COMPLEX BI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
DOUBLE PRECISION AA, AD, AK, ALIM, ATRM, AZ, AZ3, BB, BII, BIR,
* BK, CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2,
* DIG, DK, D1, D2, EAA, ELIM, FID, FMR, FNU, FNUL, PI, RL, R1M5,
* SFAC, STI, STR, S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I,
* TRM2R, TTH, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, ZABS
INTEGER ID, IERR, K, KODE, K1, K2, NZ, I1MACH
DIMENSION CYR(2), CYI(2)
DATA TTH, C1, C2, COEF, PI /6.66666666666666667D-01,
* 6.14926627446000736D-01,4.48288357353826359D-01,
* 5.77350269189625765D-01,3.14159265358979324D+00/
DATA CONER, CONEI /1.0D0,0.0D0/
C***FIRST EXECUTABLE STATEMENT ZBIRY
IERR = 0
NZ=0
IF (ID.LT.0 .OR. ID.GT.1) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (IERR.NE.0) RETURN
AZ = ZABS(COMPLEX(ZR,ZI))
TOL = DMAX1(D1MACH(4),1.0D-18)
FID = DBLE(FLOAT(ID))
IF (AZ.GT.1.0E0) GO TO 70
C-----------------------------------------------------------------------
C POWER SERIES FOR CABS(Z).LE.1.
C-----------------------------------------------------------------------
S1R = CONER
S1I = CONEI
S2R = CONER
S2I = CONEI
IF (AZ.LT.TOL) GO TO 130
AA = AZ*AZ
IF (AA.LT.TOL/AZ) GO TO 40
TRM1R = CONER
TRM1I = CONEI
TRM2R = CONER
TRM2I = CONEI
ATRM = 1.0D0
STR = ZR*ZR - ZI*ZI
STI = ZR*ZI + ZI*ZR
Z3R = STR*ZR - STI*ZI
Z3I = STR*ZI + STI*ZR
AZ3 = AZ*AA
AK = 2.0D0 + FID
BK = 3.0D0 - FID - FID
CK = 4.0D0 - FID
DK = 3.0D0 + FID + FID
D1 = AK*DK
D2 = BK*CK
AD = DMIN1(D1,D2)
AK = 24.0D0 + 9.0D0*FID
BK = 30.0D0 - 9.0D0*FID
DO 30 K=1,25
STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
TRM1R = STR
S1R = S1R + TRM1R
S1I = S1I + TRM1I
STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
TRM2R = STR
S2R = S2R + TRM2R
S2I = S2I + TRM2I
ATRM = ATRM*AZ3/AD
D1 = D1 + AK
D2 = D2 + BK
AD = DMIN1(D1,D2)
IF (ATRM.LT.TOL*AD) GO TO 40
AK = AK + 18.0D0
BK = BK + 18.0D0
30 CONTINUE
40 CONTINUE
IF (ID.EQ.1) GO TO 50
BIR = C1*S1R + C2*(ZR*S2R-ZI*S2I)
BII = C1*S1I + C2*(ZR*S2I+ZI*S2R)
IF (KODE.EQ.1) RETURN
CALL ZSQRT(ZR, ZI, STR, STI)
ZTAR = TTH*(ZR*STR-ZI*STI)
ZTAI = TTH*(ZR*STI+ZI*STR)
AA = ZTAR
AA = -DABS(AA)
EAA = DEXP(AA)
BIR = BIR*EAA
BII = BII*EAA
RETURN
50 CONTINUE
BIR = S2R*C2
BII = S2I*C2
IF (AZ.LE.TOL) GO TO 60
CC = C1/(1.0D0+FID)
STR = S1R*ZR - S1I*ZI
STI = S1R*ZI + S1I*ZR
BIR = BIR + CC*(STR*ZR-STI*ZI)
BII = BII + CC*(STR*ZI+STI*ZR)
60 CONTINUE
IF (KODE.EQ.1) RETURN
CALL ZSQRT(ZR, ZI, STR, STI)
ZTAR = TTH*(ZR*STR-ZI*STI)
ZTAI = TTH*(ZR*STI+ZI*STR)
AA = ZTAR
AA = -DABS(AA)
EAA = DEXP(AA)
BIR = BIR*EAA
BII = BII*EAA
RETURN
C-----------------------------------------------------------------------
C CASE FOR CABS(Z).GT.1.0
C-----------------------------------------------------------------------
70 CONTINUE
FNU = (1.0D0+FID)/3.0D0
C-----------------------------------------------------------------------
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
C-----------------------------------------------------------------------
K1 = I1MACH(15)
K2 = I1MACH(16)
R1M5 = D1MACH(5)
K = MIN0(IABS(K1),IABS(K2))
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
K1 = I1MACH(14) - 1
AA = R1M5*DBLE(FLOAT(K1))
DIG = DMIN1(AA,18.0D0)
AA = AA*2.303D0
ALIM = ELIM + DMAX1(-AA,-41.45D0)
RL = 1.2D0*DIG + 3.0D0
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
C-----------------------------------------------------------------------
C TEST FOR RANGE
C-----------------------------------------------------------------------
AA=0.5D0/TOL
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
AA=DMIN1(AA,BB)
AA=AA**TTH
IF (AZ.GT.AA) GO TO 260
AA=DSQRT(AA)
IF (AZ.GT.AA) IERR=3
CALL ZSQRT(ZR, ZI, CSQR, CSQI)
ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
C-----------------------------------------------------------------------
C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
C-----------------------------------------------------------------------
SFAC = 1.0D0
AK = ZTAI
IF (ZR.GE.0.0D0) GO TO 80
BK = ZTAR
CK = -DABS(BK)
ZTAR = CK
ZTAI = AK
80 CONTINUE
IF (ZI.NE.0.0D0 .OR. ZR.GT.0.0D0) GO TO 90
ZTAR = 0.0D0
ZTAI = AK
90 CONTINUE
AA = ZTAR
IF (KODE.EQ.2) GO TO 100
C-----------------------------------------------------------------------
C OVERFLOW TEST
C-----------------------------------------------------------------------
BB = DABS(AA)
IF (BB.LT.ALIM) GO TO 100
BB = BB + 0.25D0*DLOG(AZ)
SFAC = TOL
IF (BB.GT.ELIM) GO TO 190
100 CONTINUE
FMR = 0.0D0
IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
FMR = PI
IF (ZI.LT.0.0D0) FMR = -PI
ZTAR = -ZTAR
ZTAI = -ZTAI
110 CONTINUE
C-----------------------------------------------------------------------
C AA=FACTOR FOR ANALYTIC CONTINUATION OF I(FNU,ZTA)
C KODE=2 RETURNS EXP(-ABS(XZTA))*I(FNU,ZTA) FROM CBESI
C-----------------------------------------------------------------------
CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, RL, FNUL, TOL,
* ELIM, ALIM)
IF (NZ.LT.0) GO TO 200
AA = FMR*FNU
Z3R = SFAC
STR = DCOS(AA)
STI = DSIN(AA)
S1R = (STR*CYR(1)-STI*CYI(1))*Z3R
S1I = (STR*CYI(1)+STI*CYR(1))*Z3R
FNU = (2.0D0-FID)/3.0D0
CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 2, CYR, CYI, NZ, RL, FNUL, TOL,
* ELIM, ALIM)
CYR(1) = CYR(1)*Z3R
CYI(1) = CYI(1)*Z3R
CYR(2) = CYR(2)*Z3R
CYI(2) = CYI(2)*Z3R
C-----------------------------------------------------------------------
C BACKWARD RECUR ONE STEP FOR ORDERS -1/3 OR -2/3
C-----------------------------------------------------------------------
CALL ZDIV(CYR(1), CYI(1), ZTAR, ZTAI, STR, STI)
S2R = (FNU+FNU)*STR + CYR(2)
S2I = (FNU+FNU)*STI + CYI(2)
AA = FMR*(FNU-1.0D0)
STR = DCOS(AA)
STI = DSIN(AA)
S1R = COEF*(S1R+S2R*STR-S2I*STI)
S1I = COEF*(S1I+S2R*STI+S2I*STR)
IF (ID.EQ.1) GO TO 120
STR = CSQR*S1R - CSQI*S1I
S1I = CSQR*S1I + CSQI*S1R
S1R = STR
BIR = S1R/SFAC
BII = S1I/SFAC
RETURN
120 CONTINUE
STR = ZR*S1R - ZI*S1I
S1I = ZR*S1I + ZI*S1R
S1R = STR
BIR = S1R/SFAC
BII = S1I/SFAC
RETURN
130 CONTINUE
AA = C1*(1.0D0-FID) + FID*C2
BIR = AA
BII = 0.0D0
RETURN
190 CONTINUE
IERR=2
NZ=0
RETURN
200 CONTINUE
IF(NZ.EQ.(-1)) GO TO 190
NZ=0
IERR=5
RETURN
260 CONTINUE
IERR=4
NZ=0
RETURN
END

View file

@ -1,568 +0,0 @@
SUBROUTINE ZBKNU(ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM,
* ALIM)
C***BEGIN PROLOGUE ZBKNU
C***REFER TO ZBESI,ZBESK,ZAIRY,ZBESH
C
C ZBKNU COMPUTES THE K BESSEL FUNCTION IN THE RIGHT HALF Z PLANE.
C
C***ROUTINES CALLED DGAMLN,I1MACH,D1MACH,ZKSCL,ZSHCH,ZUCHK,ZABS,ZDIV,
C ZEXP,ZLOG,ZMLT,ZSQRT
C***END PROLOGUE ZBKNU
C
DOUBLE PRECISION AA, AK, ALIM, ASCLE, A1, A2, BB, BK, BRY, CAZ,
* CBI, CBR, CC, CCHI, CCHR, CKI, CKR, COEFI, COEFR, CONEI, CONER,
* CRSCR, CSCLR, CSHI, CSHR, CSI, CSR, CSRR, CSSR, CTWOR,
* CZEROI, CZEROR, CZI, CZR, DNU, DNU2, DPI, ELIM, ETEST, FC, FHS,
* FI, FK, FKS, FMUI, FMUR, FNU, FPI, FR, G1, G2, HPI, PI, PR, PTI,
* PTR, P1I, P1R, P2I, P2M, P2R, QI, QR, RAK, RCAZ, RTHPI, RZI,
* RZR, R1, S, SMUI, SMUR, SPI, STI, STR, S1I, S1R, S2I, S2R, TM,
* TOL, TTH, T1, T2, YI, YR, ZI, ZR, DGAMLN, D1MACH, ZABS, ELM,
* CELMR, ZDR, ZDI, AS, ALAS, HELIM, CYR, CYI
INTEGER I, IFLAG, INU, K, KFLAG, KK, KMAX, KODE, KODED, N, NZ,
* IDUM, I1MACH, J, IC, INUB, NW
DIMENSION YR(N), YI(N), CC(8), CSSR(3), CSRR(3), BRY(3), CYR(2),
* CYI(2)
C COMPLEX Z,Y,A,B,RZ,SMU,FU,FMU,F,FLRZ,CZ,S1,S2,CSH,CCH
C COMPLEX CK,P,Q,COEF,P1,P2,CBK,PT,CZERO,CONE,CTWO,ST,EZ,CS,DK
C
DATA KMAX / 30 /
DATA CZEROR,CZEROI,CONER,CONEI,CTWOR,R1/
1 0.0D0 , 0.0D0 , 1.0D0 , 0.0D0 , 2.0D0 , 2.0D0 /
DATA DPI, RTHPI, SPI ,HPI, FPI, TTH /
1 3.14159265358979324D0, 1.25331413731550025D0,
2 1.90985931710274403D0, 1.57079632679489662D0,
3 1.89769999331517738D0, 6.66666666666666666D-01/
DATA CC(1), CC(2), CC(3), CC(4), CC(5), CC(6), CC(7), CC(8)/
1 5.77215664901532861D-01, -4.20026350340952355D-02,
2 -4.21977345555443367D-02, 7.21894324666309954D-03,
3 -2.15241674114950973D-04, -2.01348547807882387D-05,
4 1.13302723198169588D-06, 6.11609510448141582D-09/
C
CAZ = ZABS(COMPLEX(ZR,ZI))
CSCLR = 1.0D0/TOL
CRSCR = TOL
CSSR(1) = CSCLR
CSSR(2) = 1.0D0
CSSR(3) = CRSCR
CSRR(1) = CRSCR
CSRR(2) = 1.0D0
CSRR(3) = CSCLR
BRY(1) = 1.0D+3*D1MACH(1)/TOL
BRY(2) = 1.0D0/BRY(1)
BRY(3) = D1MACH(2)
NZ = 0
IFLAG = 0
KODED = KODE
RCAZ = 1.0D0/CAZ
STR = ZR*RCAZ
STI = -ZI*RCAZ
RZR = (STR+STR)*RCAZ
RZI = (STI+STI)*RCAZ
INU = INT(SNGL(FNU+0.5D0))
DNU = FNU - DBLE(FLOAT(INU))
IF (DABS(DNU).EQ.0.5D0) GO TO 110
DNU2 = 0.0D0
IF (DABS(DNU).GT.TOL) DNU2 = DNU*DNU
IF (CAZ.GT.R1) GO TO 110
C-----------------------------------------------------------------------
C SERIES FOR CABS(Z).LE.R1
C-----------------------------------------------------------------------
FC = 1.0D0
CALL ZLOG(RZR, RZI, SMUR, SMUI, IDUM)
FMUR = SMUR*DNU
FMUI = SMUI*DNU
CALL ZSHCH(FMUR, FMUI, CSHR, CSHI, CCHR, CCHI)
IF (DNU.EQ.0.0D0) GO TO 10
FC = DNU*DPI
FC = FC/DSIN(FC)
SMUR = CSHR/DNU
SMUI = CSHI/DNU
10 CONTINUE
A2 = 1.0D0 + DNU
C-----------------------------------------------------------------------
C GAM(1-Z)*GAM(1+Z)=PI*Z/SIN(PI*Z), T1=1/GAM(1-DNU), T2=1/GAM(1+DNU)
C-----------------------------------------------------------------------
T2 = DEXP(-DGAMLN(A2,IDUM))
T1 = 1.0D0/(T2*FC)
IF (DABS(DNU).GT.0.1D0) GO TO 40
C-----------------------------------------------------------------------
C SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU)
C-----------------------------------------------------------------------
AK = 1.0D0
S = CC(1)
DO 20 K=2,8
AK = AK*DNU2
TM = CC(K)*AK
S = S + TM
IF (DABS(TM).LT.TOL) GO TO 30
20 CONTINUE
30 G1 = -S
GO TO 50
40 CONTINUE
G1 = (T1-T2)/(DNU+DNU)
50 CONTINUE
G2 = (T1+T2)*0.5D0
FR = FC*(CCHR*G1+SMUR*G2)
FI = FC*(CCHI*G1+SMUI*G2)
CALL ZEXP(FMUR, FMUI, STR, STI)
PR = 0.5D0*STR/T2
PI = 0.5D0*STI/T2
CALL ZDIV(0.5D0, 0.0D0, STR, STI, PTR, PTI)
QR = PTR/T1
QI = PTI/T1
S1R = FR
S1I = FI
S2R = PR
S2I = PI
AK = 1.0D0
A1 = 1.0D0
CKR = CONER
CKI = CONEI
BK = 1.0D0 - DNU2
IF (INU.GT.0 .OR. N.GT.1) GO TO 80
C-----------------------------------------------------------------------
C GENERATE K(FNU,Z), 0.0D0 .LE. FNU .LT. 0.5D0 AND N=1
C-----------------------------------------------------------------------
IF (CAZ.LT.TOL) GO TO 70
CALL ZMLT(ZR, ZI, ZR, ZI, CZR, CZI)
CZR = 0.25D0*CZR
CZI = 0.25D0*CZI
T1 = 0.25D0*CAZ*CAZ
60 CONTINUE
FR = (FR*AK+PR+QR)/BK
FI = (FI*AK+PI+QI)/BK
STR = 1.0D0/(AK-DNU)
PR = PR*STR
PI = PI*STR
STR = 1.0D0/(AK+DNU)
QR = QR*STR
QI = QI*STR
STR = CKR*CZR - CKI*CZI
RAK = 1.0D0/AK
CKI = (CKR*CZI+CKI*CZR)*RAK
CKR = STR*RAK
S1R = CKR*FR - CKI*FI + S1R
S1I = CKR*FI + CKI*FR + S1I
A1 = A1*T1*RAK
BK = BK + AK + AK + 1.0D0
AK = AK + 1.0D0
IF (A1.GT.TOL) GO TO 60
70 CONTINUE
YR(1) = S1R
YI(1) = S1I
IF (KODED.EQ.1) RETURN
CALL ZEXP(ZR, ZI, STR, STI)
CALL ZMLT(S1R, S1I, STR, STI, YR(1), YI(1))
RETURN
C-----------------------------------------------------------------------
C GENERATE K(DNU,Z) AND K(DNU+1,Z) FOR FORWARD RECURRENCE
C-----------------------------------------------------------------------
80 CONTINUE
IF (CAZ.LT.TOL) GO TO 100
CALL ZMLT(ZR, ZI, ZR, ZI, CZR, CZI)
CZR = 0.25D0*CZR
CZI = 0.25D0*CZI
T1 = 0.25D0*CAZ*CAZ
90 CONTINUE
FR = (FR*AK+PR+QR)/BK
FI = (FI*AK+PI+QI)/BK
STR = 1.0D0/(AK-DNU)
PR = PR*STR
PI = PI*STR
STR = 1.0D0/(AK+DNU)
QR = QR*STR
QI = QI*STR
STR = CKR*CZR - CKI*CZI
RAK = 1.0D0/AK
CKI = (CKR*CZI+CKI*CZR)*RAK
CKR = STR*RAK
S1R = CKR*FR - CKI*FI + S1R
S1I = CKR*FI + CKI*FR + S1I
STR = PR - FR*AK
STI = PI - FI*AK
S2R = CKR*STR - CKI*STI + S2R
S2I = CKR*STI + CKI*STR + S2I
A1 = A1*T1*RAK
BK = BK + AK + AK + 1.0D0
AK = AK + 1.0D0
IF (A1.GT.TOL) GO TO 90
100 CONTINUE
KFLAG = 2
A1 = FNU + 1.0D0
AK = A1*DABS(SMUR)
IF (AK.GT.ALIM) KFLAG = 3
STR = CSSR(KFLAG)
P2R = S2R*STR
P2I = S2I*STR
CALL ZMLT(P2R, P2I, RZR, RZI, S2R, S2I)
S1R = S1R*STR
S1I = S1I*STR
IF (KODED.EQ.1) GO TO 210
CALL ZEXP(ZR, ZI, FR, FI)
CALL ZMLT(S1R, S1I, FR, FI, S1R, S1I)
CALL ZMLT(S2R, S2I, FR, FI, S2R, S2I)
GO TO 210
C-----------------------------------------------------------------------
C IFLAG=0 MEANS NO UNDERFLOW OCCURRED
C IFLAG=1 MEANS AN UNDERFLOW OCCURRED- COMPUTATION PROCEEDS WITH
C KODED=2 AND A TEST FOR ON SCALE VALUES IS MADE DURING FORWARD
C RECURSION
C-----------------------------------------------------------------------
110 CONTINUE
CALL ZSQRT(ZR, ZI, STR, STI)
CALL ZDIV(RTHPI, CZEROI, STR, STI, COEFR, COEFI)
KFLAG = 2
IF (KODED.EQ.2) GO TO 120
IF (ZR.GT.ALIM) GO TO 290
C BLANK LINE
STR = DEXP(-ZR)*CSSR(KFLAG)
STI = -STR*DSIN(ZI)
STR = STR*DCOS(ZI)
CALL ZMLT(COEFR, COEFI, STR, STI, COEFR, COEFI)
120 CONTINUE
IF (DABS(DNU).EQ.0.5D0) GO TO 300
C-----------------------------------------------------------------------
C MILLER ALGORITHM FOR CABS(Z).GT.R1
C-----------------------------------------------------------------------
AK = DCOS(DPI*DNU)
AK = DABS(AK)
IF (AK.EQ.CZEROR) GO TO 300
FHS = DABS(0.25D0-DNU2)
IF (FHS.EQ.CZEROR) GO TO 300
C-----------------------------------------------------------------------
C COMPUTE R2=F(E). IF CABS(Z).GE.R2, USE FORWARD RECURRENCE TO
C DETERMINE THE BACKWARD INDEX K. R2=F(E) IS A STRAIGHT LINE ON
C 12.LE.E.LE.60. E IS COMPUTED FROM 2**(-E)=B**(1-I1MACH(14))=
C TOL WHERE B IS THE BASE OF THE ARITHMETIC.
C-----------------------------------------------------------------------
T1 = DBLE(FLOAT(I1MACH(14)-1))
T1 = T1*D1MACH(5)*3.321928094D0
T1 = DMAX1(T1,12.0D0)
T1 = DMIN1(T1,60.0D0)
T2 = TTH*T1 - 6.0D0
IF (ZR.NE.0.0D0) GO TO 130
T1 = HPI
GO TO 140
130 CONTINUE
T1 = DATAN(ZI/ZR)
T1 = DABS(T1)
140 CONTINUE
IF (T2.GT.CAZ) GO TO 170
C-----------------------------------------------------------------------
C FORWARD RECURRENCE LOOP WHEN CABS(Z).GE.R2
C-----------------------------------------------------------------------
ETEST = AK/(DPI*CAZ*TOL)
FK = CONER
IF (ETEST.LT.CONER) GO TO 180
FKS = CTWOR
CKR = CAZ + CAZ + CTWOR
P1R = CZEROR
P2R = CONER
DO 150 I=1,KMAX
AK = FHS/FKS
CBR = CKR/(FK+CONER)
PTR = P2R
P2R = CBR*P2R - P1R*AK
P1R = PTR
CKR = CKR + CTWOR
FKS = FKS + FK + FK + CTWOR
FHS = FHS + FK + FK
FK = FK + CONER
STR = DABS(P2R)*FK
IF (ETEST.LT.STR) GO TO 160
150 CONTINUE
GO TO 310
160 CONTINUE
FK = FK + SPI*T1*DSQRT(T2/CAZ)
FHS = DABS(0.25D0-DNU2)
GO TO 180
170 CONTINUE
C-----------------------------------------------------------------------
C COMPUTE BACKWARD INDEX K FOR CABS(Z).LT.R2
C-----------------------------------------------------------------------
A2 = DSQRT(CAZ)
AK = FPI*AK/(TOL*DSQRT(A2))
AA = 3.0D0*T1/(1.0D0+CAZ)
BB = 14.7D0*T1/(28.0D0+CAZ)
AK = (DLOG(AK)+CAZ*DCOS(AA)/(1.0D0+0.008D0*CAZ))/DCOS(BB)
FK = 0.12125D0*AK*AK/CAZ + 1.5D0
180 CONTINUE
C-----------------------------------------------------------------------
C BACKWARD RECURRENCE LOOP FOR MILLER ALGORITHM
C-----------------------------------------------------------------------
K = INT(SNGL(FK))
FK = DBLE(FLOAT(K))
FKS = FK*FK
P1R = CZEROR
P1I = CZEROI
P2R = TOL
P2I = CZEROI
CSR = P2R
CSI = P2I
DO 190 I=1,K
A1 = FKS - FK
AK = (FKS+FK)/(A1+FHS)
RAK = 2.0D0/(FK+CONER)
CBR = (FK+ZR)*RAK
CBI = ZI*RAK
PTR = P2R
PTI = P2I
P2R = (PTR*CBR-PTI*CBI-P1R)*AK
P2I = (PTI*CBR+PTR*CBI-P1I)*AK
P1R = PTR
P1I = PTI
CSR = CSR + P2R
CSI = CSI + P2I
FKS = A1 - FK + CONER
FK = FK - CONER
190 CONTINUE
C-----------------------------------------------------------------------
C COMPUTE (P2/CS)=(P2/CABS(CS))*(CONJG(CS)/CABS(CS)) FOR BETTER
C SCALING
C-----------------------------------------------------------------------
TM = ZABS(COMPLEX(CSR,CSI))
PTR = 1.0D0/TM
S1R = P2R*PTR
S1I = P2I*PTR
CSR = CSR*PTR
CSI = -CSI*PTR
CALL ZMLT(COEFR, COEFI, S1R, S1I, STR, STI)
CALL ZMLT(STR, STI, CSR, CSI, S1R, S1I)
IF (INU.GT.0 .OR. N.GT.1) GO TO 200
ZDR = ZR
ZDI = ZI
IF(IFLAG.EQ.1) GO TO 270
GO TO 240
200 CONTINUE
C-----------------------------------------------------------------------
C COMPUTE P1/P2=(P1/CABS(P2)*CONJG(P2)/CABS(P2) FOR SCALING
C-----------------------------------------------------------------------
TM = ZABS(COMPLEX(P2R,P2I))
PTR = 1.0D0/TM
P1R = P1R*PTR
P1I = P1I*PTR
P2R = P2R*PTR
P2I = -P2I*PTR
CALL ZMLT(P1R, P1I, P2R, P2I, PTR, PTI)
STR = DNU + 0.5D0 - PTR
STI = -PTI
CALL ZDIV(STR, STI, ZR, ZI, STR, STI)
STR = STR + 1.0D0
CALL ZMLT(STR, STI, S1R, S1I, S2R, S2I)
C-----------------------------------------------------------------------
C FORWARD RECURSION ON THE THREE TERM RECURSION WITH RELATION WITH
C SCALING NEAR EXPONENT EXTREMES ON KFLAG=1 OR KFLAG=3
C-----------------------------------------------------------------------
210 CONTINUE
STR = DNU + 1.0D0
CKR = STR*RZR
CKI = STR*RZI
IF (N.EQ.1) INU = INU - 1
IF (INU.GT.0) GO TO 220
IF (N.GT.1) GO TO 215
S1R = S2R
S1I = S2I
215 CONTINUE
ZDR = ZR
ZDI = ZI
IF(IFLAG.EQ.1) GO TO 270
GO TO 240
220 CONTINUE
INUB = 1
IF(IFLAG.EQ.1) GO TO 261
225 CONTINUE
P1R = CSRR(KFLAG)
ASCLE = BRY(KFLAG)
DO 230 I=INUB,INU
STR = S2R
STI = S2I
S2R = CKR*STR - CKI*STI + S1R
S2I = CKR*STI + CKI*STR + S1I
S1R = STR
S1I = STI
CKR = CKR + RZR
CKI = CKI + RZI
IF (KFLAG.GE.3) GO TO 230
P2R = S2R*P1R
P2I = S2I*P1R
STR = DABS(P2R)
STI = DABS(P2I)
P2M = DMAX1(STR,STI)
IF (P2M.LE.ASCLE) GO TO 230
KFLAG = KFLAG + 1
ASCLE = BRY(KFLAG)
S1R = S1R*P1R
S1I = S1I*P1R
S2R = P2R
S2I = P2I
STR = CSSR(KFLAG)
S1R = S1R*STR
S1I = S1I*STR
S2R = S2R*STR
S2I = S2I*STR
P1R = CSRR(KFLAG)
230 CONTINUE
IF (N.NE.1) GO TO 240
S1R = S2R
S1I = S2I
240 CONTINUE
STR = CSRR(KFLAG)
YR(1) = S1R*STR
YI(1) = S1I*STR
IF (N.EQ.1) RETURN
YR(2) = S2R*STR
YI(2) = S2I*STR
IF (N.EQ.2) RETURN
KK = 2
250 CONTINUE
KK = KK + 1
IF (KK.GT.N) RETURN
P1R = CSRR(KFLAG)
ASCLE = BRY(KFLAG)
DO 260 I=KK,N
P2R = S2R
P2I = S2I
S2R = CKR*P2R - CKI*P2I + S1R
S2I = CKI*P2R + CKR*P2I + S1I
S1R = P2R
S1I = P2I
CKR = CKR + RZR
CKI = CKI + RZI
P2R = S2R*P1R
P2I = S2I*P1R
YR(I) = P2R
YI(I) = P2I
IF (KFLAG.GE.3) GO TO 260
STR = DABS(P2R)
STI = DABS(P2I)
P2M = DMAX1(STR,STI)
IF (P2M.LE.ASCLE) GO TO 260
KFLAG = KFLAG + 1
ASCLE = BRY(KFLAG)
S1R = S1R*P1R
S1I = S1I*P1R
S2R = P2R
S2I = P2I
STR = CSSR(KFLAG)
S1R = S1R*STR
S1I = S1I*STR
S2R = S2R*STR
S2I = S2I*STR
P1R = CSRR(KFLAG)
260 CONTINUE
RETURN
C-----------------------------------------------------------------------
C IFLAG=1 CASES, FORWARD RECURRENCE ON SCALED VALUES ON UNDERFLOW
C-----------------------------------------------------------------------
261 CONTINUE
HELIM = 0.5D0*ELIM
ELM = DEXP(-ELIM)
CELMR = ELM
ASCLE = BRY(1)
ZDR = ZR
ZDI = ZI
IC = -1
J = 2
DO 262 I=1,INU
STR = S2R
STI = S2I
S2R = STR*CKR-STI*CKI+S1R
S2I = STI*CKR+STR*CKI+S1I
S1R = STR
S1I = STI
CKR = CKR+RZR
CKI = CKI+RZI
AS = ZABS(COMPLEX(S2R,S2I))
ALAS = DLOG(AS)
P2R = -ZDR+ALAS
IF(P2R.LT.(-ELIM)) GO TO 263
CALL ZLOG(S2R,S2I,STR,STI,IDUM)
P2R = -ZDR+STR
P2I = -ZDI+STI
P2M = DEXP(P2R)/TOL
P1R = P2M*DCOS(P2I)
P1I = P2M*DSIN(P2I)
CALL ZUCHK(P1R,P1I,NW,ASCLE,TOL)
IF(NW.NE.0) GO TO 263
J = 3 - J
CYR(J) = P1R
CYI(J) = P1I
IF(IC.EQ.(I-1)) GO TO 264
IC = I
GO TO 262
263 CONTINUE
IF(ALAS.LT.HELIM) GO TO 262
ZDR = ZDR-ELIM
S1R = S1R*CELMR
S1I = S1I*CELMR
S2R = S2R*CELMR
S2I = S2I*CELMR
262 CONTINUE
IF(N.NE.1) GO TO 270
S1R = S2R
S1I = S2I
GO TO 270
264 CONTINUE
KFLAG = 1
INUB = I+1
S2R = CYR(J)
S2I = CYI(J)
J = 3 - J
S1R = CYR(J)
S1I = CYI(J)
IF(INUB.LE.INU) GO TO 225
IF(N.NE.1) GO TO 240
S1R = S2R
S1I = S2I
GO TO 240
270 CONTINUE
YR(1) = S1R
YI(1) = S1I
IF(N.EQ.1) GO TO 280
YR(2) = S2R
YI(2) = S2I
280 CONTINUE
ASCLE = BRY(1)
CALL ZKSCL(ZDR,ZDI,FNU,N,YR,YI,NZ,RZR,RZI,ASCLE,TOL,ELIM)
INU = N - NZ
IF (INU.LE.0) RETURN
KK = NZ + 1
S1R = YR(KK)
S1I = YI(KK)
YR(KK) = S1R*CSRR(1)
YI(KK) = S1I*CSRR(1)
IF (INU.EQ.1) RETURN
KK = NZ + 2
S2R = YR(KK)
S2I = YI(KK)
YR(KK) = S2R*CSRR(1)
YI(KK) = S2I*CSRR(1)
IF (INU.EQ.2) RETURN
T2 = FNU + DBLE(FLOAT(KK-1))
CKR = T2*RZR
CKI = T2*RZI
KFLAG = 1
GO TO 250
290 CONTINUE
C-----------------------------------------------------------------------
C SCALE BY DEXP(Z), IFLAG = 1 CASES
C-----------------------------------------------------------------------
KODED = 2
IFLAG = 1
KFLAG = 2
GO TO 120
C-----------------------------------------------------------------------
C FNU=HALF ODD INTEGER CASE, DNU=-0.5
C-----------------------------------------------------------------------
300 CONTINUE
S1R = COEFR
S1I = COEFI
S2R = COEFR
S2I = COEFI
GO TO 210
C
C
310 CONTINUE
NZ=-2
RETURN
END

View file

@ -1,174 +0,0 @@
SUBROUTINE ZBUNI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, NUI, NLAST,
* FNUL, TOL, ELIM, ALIM)
C***BEGIN PROLOGUE ZBUNI
C***REFER TO ZBESI,ZBESK
C
C ZBUNI COMPUTES THE I BESSEL FUNCTION FOR LARGE CABS(Z).GT.
C FNUL AND FNU+N-1.LT.FNUL. THE ORDER IS INCREASED FROM
C FNU+N-1 GREATER THAN FNUL BY ADDING NUI AND COMPUTING
C ACCORDING TO THE UNIFORM ASYMPTOTIC EXPANSION FOR I(FNU,Z)
C ON IFORM=1 AND THE EXPANSION FOR J(FNU,Z) ON IFORM=2
C
C***ROUTINES CALLED ZUNI1,ZUNI2,ZABS,D1MACH
C***END PROLOGUE ZBUNI
C COMPLEX CSCL,CSCR,CY,RZ,ST,S1,S2,Y,Z
DOUBLE PRECISION ALIM, AX, AY, CSCLR, CSCRR, CYI, CYR, DFNU,
* ELIM, FNU, FNUI, FNUL, GNU, RAZ, RZI, RZR, STI, STR, S1I, S1R,
* S2I, S2R, TOL, YI, YR, ZI, ZR, ZABS, ASCLE, BRY, C1R, C1I, C1M,
* D1MACH
INTEGER I, IFLAG, IFORM, K, KODE, N, NL, NLAST, NUI, NW, NZ
DIMENSION YR(N), YI(N), CYR(2), CYI(2), BRY(3)
NZ = 0
AX = DABS(ZR)*1.7321D0
AY = DABS(ZI)
IFORM = 1
IF (AY.GT.AX) IFORM = 2
IF (NUI.EQ.0) GO TO 60
FNUI = DBLE(FLOAT(NUI))
DFNU = FNU + DBLE(FLOAT(N-1))
GNU = DFNU + FNUI
IF (IFORM.EQ.2) GO TO 10
C-----------------------------------------------------------------------
C ASYMPTOTIC EXPANSION FOR I(FNU,Z) FOR LARGE FNU APPLIED IN
C -PI/3.LE.ARG(Z).LE.PI/3
C-----------------------------------------------------------------------
CALL ZUNI1(ZR, ZI, GNU, KODE, 2, CYR, CYI, NW, NLAST, FNUL, TOL,
* ELIM, ALIM)
GO TO 20
10 CONTINUE
C-----------------------------------------------------------------------
C ASYMPTOTIC EXPANSION FOR J(FNU,Z*EXP(M*HPI)) FOR LARGE FNU
C APPLIED IN PI/3.LT.ABS(ARG(Z)).LE.PI/2 WHERE M=+I OR -I
C AND HPI=PI/2
C-----------------------------------------------------------------------
CALL ZUNI2(ZR, ZI, GNU, KODE, 2, CYR, CYI, NW, NLAST, FNUL, TOL,
* ELIM, ALIM)
20 CONTINUE
IF (NW.LT.0) GO TO 50
IF (NW.NE.0) GO TO 90
STR = ZABS(COMPLEX(CYR(1),CYI(1)))
C----------------------------------------------------------------------
C SCALE BACKWARD RECURRENCE, BRY(3) IS DEFINED BUT NEVER USED
C----------------------------------------------------------------------
BRY(1)=1.0D+3*D1MACH(1)/TOL
BRY(2) = 1.0D0/BRY(1)
BRY(3) = BRY(2)
IFLAG = 2
ASCLE = BRY(2)
CSCLR = 1.0D0
IF (STR.GT.BRY(1)) GO TO 21
IFLAG = 1
ASCLE = BRY(1)
CSCLR = 1.0D0/TOL
GO TO 25
21 CONTINUE
IF (STR.LT.BRY(2)) GO TO 25
IFLAG = 3
ASCLE=BRY(3)
CSCLR = TOL
25 CONTINUE
CSCRR = 1.0D0/CSCLR
S1R = CYR(2)*CSCLR
S1I = CYI(2)*CSCLR
S2R = CYR(1)*CSCLR
S2I = CYI(1)*CSCLR
RAZ = 1.0D0/ZABS(COMPLEX(ZR,ZI))
STR = ZR*RAZ
STI = -ZI*RAZ
RZR = (STR+STR)*RAZ
RZI = (STI+STI)*RAZ
DO 30 I=1,NUI
STR = S2R
STI = S2I
S2R = (DFNU+FNUI)*(RZR*STR-RZI*STI) + S1R
S2I = (DFNU+FNUI)*(RZR*STI+RZI*STR) + S1I
S1R = STR
S1I = STI
FNUI = FNUI - 1.0D0
IF (IFLAG.GE.3) GO TO 30
STR = S2R*CSCRR
STI = S2I*CSCRR
C1R = DABS(STR)
C1I = DABS(STI)
C1M = DMAX1(C1R,C1I)
IF (C1M.LE.ASCLE) GO TO 30
IFLAG = IFLAG+1
ASCLE = BRY(IFLAG)
S1R = S1R*CSCRR
S1I = S1I*CSCRR
S2R = STR
S2I = STI
CSCLR = CSCLR*TOL
CSCRR = 1.0D0/CSCLR
S1R = S1R*CSCLR
S1I = S1I*CSCLR
S2R = S2R*CSCLR
S2I = S2I*CSCLR
30 CONTINUE
YR(N) = S2R*CSCRR
YI(N) = S2I*CSCRR
IF (N.EQ.1) RETURN
NL = N - 1
FNUI = DBLE(FLOAT(NL))
K = NL
DO 40 I=1,NL
STR = S2R
STI = S2I
S2R = (FNU+FNUI)*(RZR*STR-RZI*STI) + S1R
S2I = (FNU+FNUI)*(RZR*STI+RZI*STR) + S1I
S1R = STR
S1I = STI
STR = S2R*CSCRR
STI = S2I*CSCRR
YR(K) = STR
YI(K) = STI
FNUI = FNUI - 1.0D0
K = K - 1
IF (IFLAG.GE.3) GO TO 40
C1R = DABS(STR)
C1I = DABS(STI)
C1M = DMAX1(C1R,C1I)
IF (C1M.LE.ASCLE) GO TO 40
IFLAG = IFLAG+1
ASCLE = BRY(IFLAG)
S1R = S1R*CSCRR
S1I = S1I*CSCRR
S2R = STR
S2I = STI
CSCLR = CSCLR*TOL
CSCRR = 1.0D0/CSCLR
S1R = S1R*CSCLR
S1I = S1I*CSCLR
S2R = S2R*CSCLR
S2I = S2I*CSCLR
40 CONTINUE
RETURN
50 CONTINUE
NZ = -1
IF(NW.EQ.(-2)) NZ=-2
RETURN
60 CONTINUE
IF (IFORM.EQ.2) GO TO 70
C-----------------------------------------------------------------------
C ASYMPTOTIC EXPANSION FOR I(FNU,Z) FOR LARGE FNU APPLIED IN
C -PI/3.LE.ARG(Z).LE.PI/3
C-----------------------------------------------------------------------
CALL ZUNI1(ZR, ZI, FNU, KODE, N, YR, YI, NW, NLAST, FNUL, TOL,
* ELIM, ALIM)
GO TO 80
70 CONTINUE
C-----------------------------------------------------------------------
C ASYMPTOTIC EXPANSION FOR J(FNU,Z*EXP(M*HPI)) FOR LARGE FNU
C APPLIED IN PI/3.LT.ABS(ARG(Z)).LE.PI/2 WHERE M=+I OR -I
C AND HPI=PI/2
C-----------------------------------------------------------------------
CALL ZUNI2(ZR, ZI, FNU, KODE, N, YR, YI, NW, NLAST, FNUL, TOL,
* ELIM, ALIM)
80 CONTINUE
IF (NW.LT.0) GO TO 50
NZ = NW
RETURN
90 CONTINUE
NLAST = N
RETURN
END

View file

@ -1,35 +0,0 @@
SUBROUTINE ZBUNK(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM,
* ALIM)
C***BEGIN PROLOGUE ZBUNK
C***REFER TO ZBESK,ZBESH
C
C ZBUNK COMPUTES THE K BESSEL FUNCTION FOR FNU.GT.FNUL.
C ACCORDING TO THE UNIFORM ASYMPTOTIC EXPANSION FOR K(FNU,Z)
C IN ZUNK1 AND THE EXPANSION FOR H(2,FNU,Z) IN ZUNK2
C
C***ROUTINES CALLED ZUNK1,ZUNK2
C***END PROLOGUE ZBUNK
C COMPLEX Y,Z
DOUBLE PRECISION ALIM, AX, AY, ELIM, FNU, TOL, YI, YR, ZI, ZR
INTEGER KODE, MR, N, NZ
DIMENSION YR(N), YI(N)
NZ = 0
AX = DABS(ZR)*1.7321D0
AY = DABS(ZI)
IF (AY.GT.AX) GO TO 10
C-----------------------------------------------------------------------
C ASYMPTOTIC EXPANSION FOR K(FNU,Z) FOR LARGE FNU APPLIED IN
C -PI/3.LE.ARG(Z).LE.PI/3
C-----------------------------------------------------------------------
CALL ZUNK1(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM, ALIM)
GO TO 20
10 CONTINUE
C-----------------------------------------------------------------------
C ASYMPTOTIC EXPANSION FOR H(2,FNU,Z*EXP(M*HPI)) FOR LARGE FNU
C APPLIED IN PI/3.LT.ABS(ARG(Z)).LE.PI/2 WHERE M=+I OR -I
C AND HPI=PI/2
C-----------------------------------------------------------------------
CALL ZUNK2(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM, ALIM)
20 CONTINUE
RETURN
END

View file

@ -1,19 +0,0 @@
SUBROUTINE ZDIV(AR, AI, BR, BI, CR, CI)
C***BEGIN PROLOGUE ZDIV
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
C
C DOUBLE PRECISION COMPLEX DIVIDE C=A/B.
C
C***ROUTINES CALLED ZABS
C***END PROLOGUE ZDIV
DOUBLE PRECISION AR, AI, BR, BI, CR, CI, BM, CA, CB, CC, CD
DOUBLE PRECISION ZABS
BM = 1.0D0/ZABS(COMPLEX(BR,BI))
CC = BR*BM
CD = BI*BM
CA = (AR*CC+AI*CD)*BM
CB = (AI*CC-AR*CD)*BM
CR = CA
CI = CB
RETURN
END

View file

@ -1,16 +0,0 @@
SUBROUTINE ZEXP(AR, AI, BR, BI)
C***BEGIN PROLOGUE ZEXP
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
C
C DOUBLE PRECISION COMPLEX EXPONENTIAL FUNCTION B=EXP(A)
C
C***ROUTINES CALLED (NONE)
C***END PROLOGUE ZEXP
DOUBLE PRECISION AR, AI, BR, BI, ZM, CA, CB
ZM = DEXP(AR)
CA = ZM*DCOS(AI)
CB = ZM*DSIN(AI)
BR = CA
BI = CB
RETURN
END

View file

@ -1,121 +0,0 @@
SUBROUTINE ZKSCL(ZRR,ZRI,FNU,N,YR,YI,NZ,RZR,RZI,ASCLE,TOL,ELIM)
C***BEGIN PROLOGUE ZKSCL
C***REFER TO ZBESK
C
C SET K FUNCTIONS TO ZERO ON UNDERFLOW, CONTINUE RECURRENCE
C ON SCALED FUNCTIONS UNTIL TWO MEMBERS COME ON SCALE, THEN
C RETURN WITH MIN(NZ+2,N) VALUES SCALED BY 1/TOL.
C
C***ROUTINES CALLED ZUCHK,ZABS,ZLOG
C***END PROLOGUE ZKSCL
C COMPLEX CK,CS,CY,CZERO,RZ,S1,S2,Y,ZR,ZD,CELM
DOUBLE PRECISION ACS, AS, ASCLE, CKI, CKR, CSI, CSR, CYI,
* CYR, ELIM, FN, FNU, RZI, RZR, STR, S1I, S1R, S2I,
* S2R, TOL, YI, YR, ZEROI, ZEROR, ZRI, ZRR, ZABS,
* ZDR, ZDI, CELMR, ELM, HELIM, ALAS
INTEGER I, IC, IDUM, KK, N, NN, NW, NZ
DIMENSION YR(N), YI(N), CYR(2), CYI(2)
DATA ZEROR,ZEROI / 0.0D0 , 0.0D0 /
C
NZ = 0
IC = 0
NN = MIN0(2,N)
DO 10 I=1,NN
S1R = YR(I)
S1I = YI(I)
CYR(I) = S1R
CYI(I) = S1I
AS = ZABS(COMPLEX(S1R,S1I))
ACS = -ZRR + DLOG(AS)
NZ = NZ + 1
YR(I) = ZEROR
YI(I) = ZEROI
IF (ACS.LT.(-ELIM)) GO TO 10
CALL ZLOG(S1R, S1I, CSR, CSI, IDUM)
CSR = CSR - ZRR
CSI = CSI - ZRI
STR = DEXP(CSR)/TOL
CSR = STR*DCOS(CSI)
CSI = STR*DSIN(CSI)
CALL ZUCHK(CSR, CSI, NW, ASCLE, TOL)
IF (NW.NE.0) GO TO 10
YR(I) = CSR
YI(I) = CSI
IC = I
NZ = NZ - 1
10 CONTINUE
IF (N.EQ.1) RETURN
IF (IC.GT.1) GO TO 20
YR(1) = ZEROR
YI(1) = ZEROI
NZ = 2
20 CONTINUE
IF (N.EQ.2) RETURN
IF (NZ.EQ.0) RETURN
FN = FNU + 1.0D0
CKR = FN*RZR
CKI = FN*RZI
S1R = CYR(1)
S1I = CYI(1)
S2R = CYR(2)
S2I = CYI(2)
HELIM = 0.5D0*ELIM
ELM = DEXP(-ELIM)
CELMR = ELM
ZDR = ZRR
ZDI = ZRI
C
C FIND TWO CONSECUTIVE Y VALUES ON SCALE. SCALE RECURRENCE IF
C S2 GETS LARGER THAN EXP(ELIM/2)
C
DO 30 I=3,N
KK = I
CSR = S2R
CSI = S2I
S2R = CKR*CSR - CKI*CSI + S1R
S2I = CKI*CSR + CKR*CSI + S1I
S1R = CSR
S1I = CSI
CKR = CKR + RZR
CKI = CKI + RZI
AS = ZABS(COMPLEX(S2R,S2I))
ALAS = DLOG(AS)
ACS = -ZDR + ALAS
NZ = NZ + 1
YR(I) = ZEROR
YI(I) = ZEROI
IF (ACS.LT.(-ELIM)) GO TO 25
CALL ZLOG(S2R, S2I, CSR, CSI, IDUM)
CSR = CSR - ZDR
CSI = CSI - ZDI
STR = DEXP(CSR)/TOL
CSR = STR*DCOS(CSI)
CSI = STR*DSIN(CSI)
CALL ZUCHK(CSR, CSI, NW, ASCLE, TOL)
IF (NW.NE.0) GO TO 25
YR(I) = CSR
YI(I) = CSI
NZ = NZ - 1
IF (IC.EQ.KK-1) GO TO 40
IC = KK
GO TO 30
25 CONTINUE
IF(ALAS.LT.HELIM) GO TO 30
ZDR = ZDR - ELIM
S1R = S1R*CELMR
S1I = S1I*CELMR
S2R = S2R*CELMR
S2I = S2I*CELMR
30 CONTINUE
NZ = N
IF(IC.EQ.N) NZ=N-1
GO TO 45
40 CONTINUE
NZ = KK - 2
45 CONTINUE
DO 50 I=1,NZ
YR(I) = ZEROR
YI(I) = ZEROI
50 CONTINUE
RETURN
END

View file

@ -1,41 +0,0 @@
SUBROUTINE ZLOG(AR, AI, BR, BI, IERR)
C***BEGIN PROLOGUE ZLOG
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
C
C DOUBLE PRECISION COMPLEX LOGARITHM B=CLOG(A)
C IERR=0,NORMAL RETURN IERR=1, Z=CMPLX(0.0,0.0)
C***ROUTINES CALLED ZABS
C***END PROLOGUE ZLOG
DOUBLE PRECISION AR, AI, BR, BI, ZM, DTHETA, DPI, DHPI
DOUBLE PRECISION ZABS
DATA DPI , DHPI / 3.141592653589793238462643383D+0,
1 1.570796326794896619231321696D+0/
C
IERR=0
IF (AR.EQ.0.0D+0) GO TO 10
IF (AI.EQ.0.0D+0) GO TO 20
DTHETA = DATAN(AI/AR)
IF (DTHETA.LE.0.0D+0) GO TO 40
IF (AR.LT.0.0D+0) DTHETA = DTHETA - DPI
GO TO 50
10 IF (AI.EQ.0.0D+0) GO TO 60
BI = DHPI
BR = DLOG(DABS(AI))
IF (AI.LT.0.0D+0) BI = -BI
RETURN
20 IF (AR.GT.0.0D+0) GO TO 30
BR = DLOG(DABS(AR))
BI = DPI
RETURN
30 BR = DLOG(AR)
BI = 0.0D+0
RETURN
40 IF (AR.LT.0.0D+0) DTHETA = DTHETA + DPI
50 ZM = ZABS(COMPLEX(AR,AI))
BR = DLOG(ZM)
BI = DTHETA
RETURN
60 CONTINUE
IERR=1
RETURN
END

View file

@ -1,204 +0,0 @@
SUBROUTINE ZMLRI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL)
C***BEGIN PROLOGUE ZMLRI
C***REFER TO ZBESI,ZBESK
C
C ZMLRI COMPUTES THE I BESSEL FUNCTION FOR RE(Z).GE.0.0 BY THE
C MILLER ALGORITHM NORMALIZED BY A NEUMANN SERIES.
C
C***ROUTINES CALLED DGAMLN,D1MACH,ZABS,ZEXP,ZLOG,ZMLT
C***END PROLOGUE ZMLRI
C COMPLEX CK,CNORM,CONE,CTWO,CZERO,PT,P1,P2,RZ,SUM,Y,Z
DOUBLE PRECISION ACK, AK, AP, AT, AZ, BK, CKI, CKR, CNORMI,
* CNORMR, CONEI, CONER, FKAP, FKK, FLAM, FNF, FNU, PTI, PTR, P1I,
* P1R, P2I, P2R, RAZ, RHO, RHO2, RZI, RZR, SCLE, STI, STR, SUMI,
* SUMR, TFNF, TOL, TST, YI, YR, ZEROI, ZEROR, ZI, ZR, DGAMLN,
* D1MACH, ZABS
INTEGER I, IAZ, IDUM, IFNU, INU, ITIME, K, KK, KM, KODE, M, N, NZ
DIMENSION YR(N), YI(N)
DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 /
SCLE = D1MACH(1)/TOL
NZ=0
AZ = ZABS(COMPLEX(ZR,ZI))
IAZ = INT(SNGL(AZ))
IFNU = INT(SNGL(FNU))
INU = IFNU + N - 1
AT = DBLE(FLOAT(IAZ)) + 1.0D0
RAZ = 1.0D0/AZ
STR = ZR*RAZ
STI = -ZI*RAZ
CKR = STR*AT*RAZ
CKI = STI*AT*RAZ
RZR = (STR+STR)*RAZ
RZI = (STI+STI)*RAZ
P1R = ZEROR
P1I = ZEROI
P2R = CONER
P2I = CONEI
ACK = (AT+1.0D0)*RAZ
RHO = ACK + DSQRT(ACK*ACK-1.0D0)
RHO2 = RHO*RHO
TST = (RHO2+RHO2)/((RHO2-1.0D0)*(RHO-1.0D0))
TST = TST/TOL
C-----------------------------------------------------------------------
C COMPUTE RELATIVE TRUNCATION ERROR INDEX FOR SERIES
C-----------------------------------------------------------------------
AK = AT
DO 10 I=1,80
PTR = P2R
PTI = P2I
P2R = P1R - (CKR*PTR-CKI*PTI)
P2I = P1I - (CKI*PTR+CKR*PTI)
P1R = PTR
P1I = PTI
CKR = CKR + RZR
CKI = CKI + RZI
AP = ZABS(COMPLEX(P2R,P2I))
IF (AP.GT.TST*AK*AK) GO TO 20
AK = AK + 1.0D0
10 CONTINUE
GO TO 110
20 CONTINUE
I = I + 1
K = 0
IF (INU.LT.IAZ) GO TO 40
C-----------------------------------------------------------------------
C COMPUTE RELATIVE TRUNCATION ERROR FOR RATIOS
C-----------------------------------------------------------------------
P1R = ZEROR
P1I = ZEROI
P2R = CONER
P2I = CONEI
AT = DBLE(FLOAT(INU)) + 1.0D0
STR = ZR*RAZ
STI = -ZI*RAZ
CKR = STR*AT*RAZ
CKI = STI*AT*RAZ
ACK = AT*RAZ
TST = DSQRT(ACK/TOL)
ITIME = 1
DO 30 K=1,80
PTR = P2R
PTI = P2I
P2R = P1R - (CKR*PTR-CKI*PTI)
P2I = P1I - (CKR*PTI+CKI*PTR)
P1R = PTR
P1I = PTI
CKR = CKR + RZR
CKI = CKI + RZI
AP = ZABS(COMPLEX(P2R,P2I))
IF (AP.LT.TST) GO TO 30
IF (ITIME.EQ.2) GO TO 40
ACK = ZABS(COMPLEX(CKR,CKI))
FLAM = ACK + DSQRT(ACK*ACK-1.0D0)
FKAP = AP/ZABS(COMPLEX(P1R,P1I))
RHO = DMIN1(FLAM,FKAP)
TST = TST*DSQRT(RHO/(RHO*RHO-1.0D0))
ITIME = 2
30 CONTINUE
GO TO 110
40 CONTINUE
C-----------------------------------------------------------------------
C BACKWARD RECURRENCE AND SUM NORMALIZING RELATION
C-----------------------------------------------------------------------
K = K + 1
KK = MAX0(I+IAZ,K+INU)
FKK = DBLE(FLOAT(KK))
P1R = ZEROR
P1I = ZEROI
C-----------------------------------------------------------------------
C SCALE P2 AND SUM BY SCLE
C-----------------------------------------------------------------------
P2R = SCLE
P2I = ZEROI
FNF = FNU - DBLE(FLOAT(IFNU))
TFNF = FNF + FNF
BK = DGAMLN(FKK+TFNF+1.0D0,IDUM) - DGAMLN(FKK+1.0D0,IDUM) -
* DGAMLN(TFNF+1.0D0,IDUM)
BK = DEXP(BK)
SUMR = ZEROR
SUMI = ZEROI
KM = KK - INU
DO 50 I=1,KM
PTR = P2R
PTI = P2I
P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI)
P2I = P1I + (FKK+FNF)*(RZI*PTR+RZR*PTI)
P1R = PTR
P1I = PTI
AK = 1.0D0 - TFNF/(FKK+TFNF)
ACK = BK*AK
SUMR = SUMR + (ACK+BK)*P1R
SUMI = SUMI + (ACK+BK)*P1I
BK = ACK
FKK = FKK - 1.0D0
50 CONTINUE
YR(N) = P2R
YI(N) = P2I
IF (N.EQ.1) GO TO 70
DO 60 I=2,N
PTR = P2R
PTI = P2I
P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI)
P2I = P1I + (FKK+FNF)*(RZI*PTR+RZR*PTI)
P1R = PTR
P1I = PTI
AK = 1.0D0 - TFNF/(FKK+TFNF)
ACK = BK*AK
SUMR = SUMR + (ACK+BK)*P1R
SUMI = SUMI + (ACK+BK)*P1I
BK = ACK
FKK = FKK - 1.0D0
M = N - I + 1
YR(M) = P2R
YI(M) = P2I
60 CONTINUE
70 CONTINUE
IF (IFNU.LE.0) GO TO 90
DO 80 I=1,IFNU
PTR = P2R
PTI = P2I
P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI)
P2I = P1I + (FKK+FNF)*(RZR*PTI+RZI*PTR)
P1R = PTR
P1I = PTI
AK = 1.0D0 - TFNF/(FKK+TFNF)
ACK = BK*AK
SUMR = SUMR + (ACK+BK)*P1R
SUMI = SUMI + (ACK+BK)*P1I
BK = ACK
FKK = FKK - 1.0D0
80 CONTINUE
90 CONTINUE
PTR = ZR
PTI = ZI
IF (KODE.EQ.2) PTR = ZEROR
CALL ZLOG(RZR, RZI, STR, STI, IDUM)
P1R = -FNF*STR + PTR
P1I = -FNF*STI + PTI
AP = DGAMLN(1.0D0+FNF,IDUM)
PTR = P1R - AP
PTI = P1I
C-----------------------------------------------------------------------
C THE DIVISION CEXP(PT)/(SUM+P2) IS ALTERED TO AVOID OVERFLOW
C IN THE DENOMINATOR BY SQUARING LARGE QUANTITIES
C-----------------------------------------------------------------------
P2R = P2R + SUMR
P2I = P2I + SUMI
AP = ZABS(COMPLEX(P2R,P2I))
P1R = 1.0D0/AP
CALL ZEXP(PTR, PTI, STR, STI)
CKR = STR*P1R
CKI = STI*P1R
PTR = P2R*P1R
PTI = -P2I*P1R
CALL ZMLT(CKR, CKI, PTR, PTI, CNORMR, CNORMI)
DO 100 I=1,N
STR = YR(I)*CNORMR - YI(I)*CNORMI
YI(I) = YR(I)*CNORMI + YI(I)*CNORMR
YR(I) = STR
100 CONTINUE
RETURN
110 CONTINUE
NZ=-2
RETURN
END

View file

@ -1,15 +0,0 @@
SUBROUTINE ZMLT(AR, AI, BR, BI, CR, CI)
C***BEGIN PROLOGUE ZMLT
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
C
C DOUBLE PRECISION COMPLEX MULTIPLY, C=A*B.
C
C***ROUTINES CALLED (NONE)
C***END PROLOGUE ZMLT
DOUBLE PRECISION AR, AI, BR, BI, CR, CI, CA, CB
CA = AR*BR - AI*BI
CB = AR*BI + AI*BR
CR = CA
CI = CB
RETURN
END

View file

@ -1,132 +0,0 @@
SUBROUTINE ZRATI(ZR, ZI, FNU, N, CYR, CYI, TOL)
C***BEGIN PROLOGUE ZRATI
C***REFER TO ZBESI,ZBESK,ZBESH
C
C ZRATI COMPUTES RATIOS OF I BESSEL FUNCTIONS BY BACKWARD
C RECURRENCE. THE STARTING INDEX IS DETERMINED BY FORWARD
C RECURRENCE AS DESCRIBED IN J. RES. OF NAT. BUR. OF STANDARDS-B,
C MATHEMATICAL SCIENCES, VOL 77B, P111-114, SEPTEMBER, 1973,
C BESSEL FUNCTIONS I AND J OF COMPLEX ARGUMENT AND INTEGER ORDER,
C BY D. J. SOOKNE.
C
C***ROUTINES CALLED ZABS,ZDIV
C***END PROLOGUE ZRATI
C COMPLEX Z,CY(1),CONE,CZERO,P1,P2,T1,RZ,PT,CDFNU
DOUBLE PRECISION AK, AMAGZ, AP1, AP2, ARG, AZ, CDFNUI, CDFNUR,
* CONEI, CONER, CYI, CYR, CZEROI, CZEROR, DFNU, FDNU, FLAM, FNU,
* FNUP, PTI, PTR, P1I, P1R, P2I, P2R, RAK, RAP1, RHO, RT2, RZI,
* RZR, TEST, TEST1, TOL, TTI, TTR, T1I, T1R, ZI, ZR, ZABS
INTEGER I, ID, IDNU, INU, ITIME, K, KK, MAGZ, N
DIMENSION CYR(N), CYI(N)
DATA CZEROR,CZEROI,CONER,CONEI,RT2/
1 0.0D0, 0.0D0, 1.0D0, 0.0D0, 1.41421356237309505D0 /
AZ = ZABS(COMPLEX(ZR,ZI))
INU = INT(SNGL(FNU))
IDNU = INU + N - 1
MAGZ = INT(SNGL(AZ))
AMAGZ = DBLE(FLOAT(MAGZ+1))
FDNU = DBLE(FLOAT(IDNU))
FNUP = DMAX1(AMAGZ,FDNU)
ID = IDNU - MAGZ - 1
ITIME = 1
K = 1
PTR = 1.0D0/AZ
RZR = PTR*(ZR+ZR)*PTR
RZI = -PTR*(ZI+ZI)*PTR
T1R = RZR*FNUP
T1I = RZI*FNUP
P2R = -T1R
P2I = -T1I
P1R = CONER
P1I = CONEI
T1R = T1R + RZR
T1I = T1I + RZI
IF (ID.GT.0) ID = 0
AP2 = ZABS(COMPLEX(P2R,P2I))
AP1 = ZABS(COMPLEX(P1R,P1I))
C-----------------------------------------------------------------------
C THE OVERFLOW TEST ON K(FNU+I-1,Z) BEFORE THE CALL TO CBKNU
C GUARANTEES THAT P2 IS ON SCALE. SCALE TEST1 AND ALL SUBSEQUENT
C P2 VALUES BY AP1 TO ENSURE THAT AN OVERFLOW DOES NOT OCCUR
C PREMATURELY.
C-----------------------------------------------------------------------
ARG = (AP2+AP2)/(AP1*TOL)
TEST1 = DSQRT(ARG)
TEST = TEST1
RAP1 = 1.0D0/AP1
P1R = P1R*RAP1
P1I = P1I*RAP1
P2R = P2R*RAP1
P2I = P2I*RAP1
AP2 = AP2*RAP1
10 CONTINUE
K = K + 1
AP1 = AP2
PTR = P2R
PTI = P2I
P2R = P1R - (T1R*PTR-T1I*PTI)
P2I = P1I - (T1R*PTI+T1I*PTR)
P1R = PTR
P1I = PTI
T1R = T1R + RZR
T1I = T1I + RZI
AP2 = ZABS(COMPLEX(P2R,P2I))
IF (AP1.LE.TEST) GO TO 10
IF (ITIME.EQ.2) GO TO 20
AK = ZABS(COMPLEX(T1R,T1I)*0.5D0)
FLAM = AK + DSQRT(AK*AK-1.0D0)
RHO = DMIN1(AP2/AP1,FLAM)
TEST = TEST1*DSQRT(RHO/(RHO*RHO-1.0D0))
ITIME = 2
GO TO 10
20 CONTINUE
KK = K + 1 - ID
AK = DBLE(FLOAT(KK))
T1R = AK
T1I = CZEROI
DFNU = FNU + DBLE(FLOAT(N-1))
P1R = 1.0D0/AP2
P1I = CZEROI
P2R = CZEROR
P2I = CZEROI
DO 30 I=1,KK
PTR = P1R
PTI = P1I
RAP1 = DFNU + T1R
TTR = RZR*RAP1
TTI = RZI*RAP1
P1R = (PTR*TTR-PTI*TTI) + P2R
P1I = (PTR*TTI+PTI*TTR) + P2I
P2R = PTR
P2I = PTI
T1R = T1R - CONER
30 CONTINUE
IF (P1R.NE.CZEROR .OR. P1I.NE.CZEROI) GO TO 40
P1R = TOL
P1I = TOL
40 CONTINUE
CALL ZDIV(P2R, P2I, P1R, P1I, CYR(N), CYI(N))
IF (N.EQ.1) RETURN
K = N - 1
AK = DBLE(FLOAT(K))
T1R = AK
T1I = CZEROI
CDFNUR = FNU*RZR
CDFNUI = FNU*RZI
DO 60 I=2,N
PTR = CDFNUR + (T1R*RZR-T1I*RZI) + CYR(K+1)
PTI = CDFNUI + (T1R*RZI+T1I*RZR) + CYI(K+1)
AK = ZABS(COMPLEX(PTR,PTI))
IF (AK.NE.CZEROR) GO TO 50
PTR = TOL
PTI = TOL
AK = TOL*RT2
50 CONTINUE
RAK = CONER/AK
CYR(K) = RAK*PTR*RAK
CYI(K) = -RAK*PTI*RAK
T1R = T1R - CONER
K = K - 1
60 CONTINUE
RETURN
END

View file

@ -1,49 +0,0 @@
SUBROUTINE ZS1S2(ZRR, ZRI, S1R, S1I, S2R, S2I, NZ, ASCLE, ALIM,
* IUF)
C***BEGIN PROLOGUE ZS1S2
C***REFER TO ZBESK,ZAIRY
C
C ZS1S2 TESTS FOR A POSSIBLE UNDERFLOW RESULTING FROM THE
C ADDITION OF THE I AND K FUNCTIONS IN THE ANALYTIC CON-
C TINUATION FORMULA WHERE S1=K FUNCTION AND S2=I FUNCTION.
C ON KODE=1 THE I AND K FUNCTIONS ARE DIFFERENT ORDERS OF
C MAGNITUDE, BUT FOR KODE=2 THEY CAN BE OF THE SAME ORDER
C OF MAGNITUDE AND THE MAXIMUM MUST BE AT LEAST ONE
C PRECISION ABOVE THE UNDERFLOW LIMIT.
C
C***ROUTINES CALLED ZABS,ZEXP,ZLOG
C***END PROLOGUE ZS1S2
C COMPLEX CZERO,C1,S1,S1D,S2,ZR
DOUBLE PRECISION AA, ALIM, ALN, ASCLE, AS1, AS2, C1I, C1R, S1DI,
* S1DR, S1I, S1R, S2I, S2R, ZEROI, ZEROR, ZRI, ZRR, ZABS
INTEGER IUF, IDUM, NZ
DATA ZEROR,ZEROI / 0.0D0 , 0.0D0 /
NZ = 0
AS1 = ZABS(COMPLEX(S1R,S1I))
AS2 = ZABS(COMPLEX(S2R,S2I))
IF (S1R.EQ.0.0D0 .AND. S1I.EQ.0.0D0) GO TO 10
IF (AS1.EQ.0.0D0) GO TO 10
ALN = -ZRR - ZRR + DLOG(AS1)
S1DR = S1R
S1DI = S1I
S1R = ZEROR
S1I = ZEROI
AS1 = ZEROR
IF (ALN.LT.(-ALIM)) GO TO 10
CALL ZLOG(S1DR, S1DI, C1R, C1I, IDUM)
C1R = C1R - ZRR - ZRR
C1I = C1I - ZRI - ZRI
CALL ZEXP(C1R, C1I, S1R, S1I)
AS1 = ZABS(COMPLEX(S1R,S1I))
IUF = IUF + 1
10 CONTINUE
AA = DMAX1(AS1,AS2)
IF (AA.GT.ASCLE) RETURN
S1R = ZEROR
S1I = ZEROI
S2R = ZEROR
S2I = ZEROI
NZ = 1
IUF = 0
RETURN
END

View file

@ -1,190 +0,0 @@
SUBROUTINE ZSERI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM,
* ALIM)
C***BEGIN PROLOGUE ZSERI
C***REFER TO ZBESI,ZBESK
C
C ZSERI COMPUTES THE I BESSEL FUNCTION FOR REAL(Z).GE.0.0 BY
C MEANS OF THE POWER SERIES FOR LARGE CABS(Z) IN THE
C REGION CABS(Z).LE.2*SQRT(FNU+1). NZ=0 IS A NORMAL RETURN.
C NZ.GT.0 MEANS THAT THE LAST NZ COMPONENTS WERE SET TO ZERO
C DUE TO UNDERFLOW. NZ.LT.0 MEANS UNDERFLOW OCCURRED, BUT THE
C CONDITION CABS(Z).LE.2*SQRT(FNU+1) WAS VIOLATED AND THE
C COMPUTATION MUST BE COMPLETED IN ANOTHER ROUTINE WITH N=N-ABS(NZ).
C
C***ROUTINES CALLED DGAMLN,D1MACH,ZUCHK,ZABS,ZDIV,ZLOG,ZMLT
C***END PROLOGUE ZSERI
C COMPLEX AK1,CK,COEF,CONE,CRSC,CSCL,CZ,CZERO,HZ,RZ,S1,S2,Y,Z
DOUBLE PRECISION AA, ACZ, AK, AK1I, AK1R, ALIM, ARM, ASCLE, ATOL,
* AZ, CKI, CKR, COEFI, COEFR, CONEI, CONER, CRSCR, CZI, CZR, DFNU,
* ELIM, FNU, FNUP, HZI, HZR, RAZ, RS, RTR1, RZI, RZR, S, SS, STI,
* STR, S1I, S1R, S2I, S2R, TOL, YI, YR, WI, WR, ZEROI, ZEROR, ZI,
* ZR, DGAMLN, D1MACH, ZABS
INTEGER I, IB, IDUM, IFLAG, IL, K, KODE, L, M, N, NN, NZ, NW
DIMENSION YR(N), YI(N), WR(2), WI(2)
DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 /
C
NZ = 0
AZ = ZABS(COMPLEX(ZR,ZI))
IF (AZ.EQ.0.0D0) GO TO 160
ARM = 1.0D+3*D1MACH(1)
RTR1 = DSQRT(ARM)
CRSCR = 1.0D0
IFLAG = 0
IF (AZ.LT.ARM) GO TO 150
HZR = 0.5D0*ZR
HZI = 0.5D0*ZI
CZR = ZEROR
CZI = ZEROI
IF (AZ.LE.RTR1) GO TO 10
CALL ZMLT(HZR, HZI, HZR, HZI, CZR, CZI)
10 CONTINUE
ACZ = ZABS(COMPLEX(CZR,CZI))
NN = N
CALL ZLOG(HZR, HZI, CKR, CKI, IDUM)
20 CONTINUE
DFNU = FNU + DBLE(FLOAT(NN-1))
FNUP = DFNU + 1.0D0
C-----------------------------------------------------------------------
C UNDERFLOW TEST
C-----------------------------------------------------------------------
AK1R = CKR*DFNU
AK1I = CKI*DFNU
AK = DGAMLN(FNUP,IDUM)
AK1R = AK1R - AK
IF (KODE.EQ.2) AK1R = AK1R - ZR
IF (AK1R.GT.(-ELIM)) GO TO 40
30 CONTINUE
NZ = NZ + 1
YR(NN) = ZEROR
YI(NN) = ZEROI
IF (ACZ.GT.DFNU) GO TO 190
NN = NN - 1
IF (NN.EQ.0) RETURN
GO TO 20
40 CONTINUE
IF (AK1R.GT.(-ALIM)) GO TO 50
IFLAG = 1
SS = 1.0D0/TOL
CRSCR = TOL
ASCLE = ARM*SS
50 CONTINUE
AA = DEXP(AK1R)
IF (IFLAG.EQ.1) AA = AA*SS
COEFR = AA*DCOS(AK1I)
COEFI = AA*DSIN(AK1I)
ATOL = TOL*ACZ/FNUP
IL = MIN0(2,NN)
DO 90 I=1,IL
DFNU = FNU + DBLE(FLOAT(NN-I))
FNUP = DFNU + 1.0D0
S1R = CONER
S1I = CONEI
IF (ACZ.LT.TOL*FNUP) GO TO 70
AK1R = CONER
AK1I = CONEI
AK = FNUP + 2.0D0
S = FNUP
AA = 2.0D0
60 CONTINUE
RS = 1.0D0/S
STR = AK1R*CZR - AK1I*CZI
STI = AK1R*CZI + AK1I*CZR
AK1R = STR*RS
AK1I = STI*RS
S1R = S1R + AK1R
S1I = S1I + AK1I
S = S + AK
AK = AK + 2.0D0
AA = AA*ACZ*RS
IF (AA.GT.ATOL) GO TO 60
70 CONTINUE
S2R = S1R*COEFR - S1I*COEFI
S2I = S1R*COEFI + S1I*COEFR
WR(I) = S2R
WI(I) = S2I
IF (IFLAG.EQ.0) GO TO 80
CALL ZUCHK(S2R, S2I, NW, ASCLE, TOL)
IF (NW.NE.0) GO TO 30
80 CONTINUE
M = NN - I + 1
YR(M) = S2R*CRSCR
YI(M) = S2I*CRSCR
IF (I.EQ.IL) GO TO 90
CALL ZDIV(COEFR, COEFI, HZR, HZI, STR, STI)
COEFR = STR*DFNU
COEFI = STI*DFNU
90 CONTINUE
IF (NN.LE.2) RETURN
K = NN - 2
AK = DBLE(FLOAT(K))
RAZ = 1.0D0/AZ
STR = ZR*RAZ
STI = -ZI*RAZ
RZR = (STR+STR)*RAZ
RZI = (STI+STI)*RAZ
IF (IFLAG.EQ.1) GO TO 120
IB = 3
100 CONTINUE
DO 110 I=IB,NN
YR(K) = (AK+FNU)*(RZR*YR(K+1)-RZI*YI(K+1)) + YR(K+2)
YI(K) = (AK+FNU)*(RZR*YI(K+1)+RZI*YR(K+1)) + YI(K+2)
AK = AK - 1.0D0
K = K - 1
110 CONTINUE
RETURN
C-----------------------------------------------------------------------
C RECUR BACKWARD WITH SCALED VALUES
C-----------------------------------------------------------------------
120 CONTINUE
C-----------------------------------------------------------------------
C EXP(-ALIM)=EXP(-ELIM)/TOL=APPROX. ONE PRECISION ABOVE THE
C UNDERFLOW LIMIT = ASCLE = D1MACH(1)*SS*1.0D+3
C-----------------------------------------------------------------------
S1R = WR(1)
S1I = WI(1)
S2R = WR(2)
S2I = WI(2)
DO 130 L=3,NN
CKR = S2R
CKI = S2I
S2R = S1R + (AK+FNU)*(RZR*CKR-RZI*CKI)
S2I = S1I + (AK+FNU)*(RZR*CKI+RZI*CKR)
S1R = CKR
S1I = CKI
CKR = S2R*CRSCR
CKI = S2I*CRSCR
YR(K) = CKR
YI(K) = CKI
AK = AK - 1.0D0
K = K - 1
IF (ZABS(COMPLEX(CKR,CKI)).GT.ASCLE) GO TO 140
130 CONTINUE
RETURN
140 CONTINUE
IB = L + 1
IF (IB.GT.NN) RETURN
GO TO 100
150 CONTINUE
NZ = N
IF (FNU.EQ.0.0D0) NZ = NZ - 1
160 CONTINUE
YR(1) = ZEROR
YI(1) = ZEROI
IF (FNU.NE.0.0D0) GO TO 170
YR(1) = CONER
YI(1) = CONEI
170 CONTINUE
IF (N.EQ.1) RETURN
DO 180 I=2,N
YR(I) = ZEROR
YI(I) = ZEROI
180 CONTINUE
RETURN
C-----------------------------------------------------------------------
C RETURN WITH NZ.LT.0 IF CABS(Z*Z/4).GT.FNU+N-NZ-1 COMPLETE
C THE CALCULATION IN CBINU WITH N=N-IABS(NZ)
C-----------------------------------------------------------------------
190 CONTINUE
NZ = -NZ
RETURN
END

View file

@ -1,22 +0,0 @@
SUBROUTINE ZSHCH(ZR, ZI, CSHR, CSHI, CCHR, CCHI)
C***BEGIN PROLOGUE ZSHCH
C***REFER TO ZBESK,ZBESH
C
C ZSHCH COMPUTES THE COMPLEX HYPERBOLIC FUNCTIONS CSH=SINH(X+I*Y)
C AND CCH=COSH(X+I*Y), WHERE I**2=-1.
C
C***ROUTINES CALLED (NONE)
C***END PROLOGUE ZSHCH
C
DOUBLE PRECISION CCHI, CCHR, CH, CN, CSHI, CSHR, SH, SN, ZI, ZR,
* DCOSH, DSINH
SH = DSINH(ZR)
CH = DCOSH(ZR)
SN = DSIN(ZI)
CN = DCOS(ZI)
CSHR = SH*CN
CSHI = CH*SN
CCHR = CH*CN
CCHI = SH*SN
RETURN
END

View file

@ -1,44 +0,0 @@
SUBROUTINE ZSQRT(AR, AI, BR, BI)
C***BEGIN PROLOGUE ZSQRT
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
C
C DOUBLE PRECISION COMPLEX SQUARE ROOT, B=CSQRT(A)
C
C***ROUTINES CALLED ZABS
C***END PROLOGUE ZSQRT
DOUBLE PRECISION AR, AI, BR, BI, ZM, DTHETA, DPI, DRT
DOUBLE PRECISION ZABS
DATA DRT , DPI / 7.071067811865475244008443621D-1,
1 3.141592653589793238462643383D+0/
ZM = ZABS(COMPLEX(AR,AI))
ZM = DSQRT(ZM)
IF (AR.EQ.0.0D+0) GO TO 10
IF (AI.EQ.0.0D+0) GO TO 20
DTHETA = DATAN(AI/AR)
IF (DTHETA.LE.0.0D+0) GO TO 40
IF (AR.LT.0.0D+0) DTHETA = DTHETA - DPI
GO TO 50
10 IF (AI.GT.0.0D+0) GO TO 60
IF (AI.LT.0.0D+0) GO TO 70
BR = 0.0D+0
BI = 0.0D+0
RETURN
20 IF (AR.GT.0.0D+0) GO TO 30
BR = 0.0D+0
BI = DSQRT(DABS(AR))
RETURN
30 BR = DSQRT(AR)
BI = 0.0D+0
RETURN
40 IF (AR.LT.0.0D+0) DTHETA = DTHETA + DPI
50 DTHETA = DTHETA*0.5D+0
BR = ZM*DCOS(DTHETA)
BI = ZM*DSIN(DTHETA)
RETURN
60 BR = ZM*DRT
BI = ZM*DRT
RETURN
70 BR = ZM*DRT
BI = -ZM*DRT
RETURN
END

View file

@ -1,28 +0,0 @@
SUBROUTINE ZUCHK(YR, YI, NZ, ASCLE, TOL)
C***BEGIN PROLOGUE ZUCHK
C***REFER TO ZSERI,ZUOIK,ZUNK1,ZUNK2,ZUNI1,ZUNI2,ZKSCL
C
C Y ENTERS AS A SCALED QUANTITY WHOSE MAGNITUDE IS GREATER THAN
C EXP(-ALIM)=ASCLE=1.0E+3*D1MACH(1)/TOL. THE TEST IS MADE TO SEE
C IF THE MAGNITUDE OF THE REAL OR IMAGINARY PART WOULD UNDERFLOW
C WHEN Y IS SCALED (BY TOL) TO ITS PROPER VALUE. Y IS ACCEPTED
C IF THE UNDERFLOW IS AT LEAST ONE PRECISION BELOW THE MAGNITUDE
C OF THE LARGEST COMPONENT; OTHERWISE THE PHASE ANGLE DOES NOT HAVE
C ABSOLUTE ACCURACY AND AN UNDERFLOW IS ASSUMED.
C
C***ROUTINES CALLED (NONE)
C***END PROLOGUE ZUCHK
C
C COMPLEX Y
DOUBLE PRECISION ASCLE, SS, ST, TOL, WR, WI, YR, YI
INTEGER NZ
NZ = 0
WR = DABS(YR)
WI = DABS(YI)
ST = DMIN1(WR,WI)
IF (ST.GT.ASCLE) RETURN
SS = DMAX1(WR,WI)
ST = ST/TOL
IF (SS.LT.ST) NZ = 1
RETURN
END

View file

@ -1,714 +0,0 @@
SUBROUTINE ZUNHJ(ZR, ZI, FNU, IPMTR, TOL, PHIR, PHII, ARGR, ARGI,
* ZETA1R, ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI)
C***BEGIN PROLOGUE ZUNHJ
C***REFER TO ZBESI,ZBESK
C
C REFERENCES
C HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ AND I.A.
C STEGUN, AMS55, NATIONAL BUREAU OF STANDARDS, 1965, CHAPTER 9.
C
C ASYMPTOTICS AND SPECIAL FUNCTIONS BY F.W.J. OLVER, ACADEMIC
C PRESS, N.Y., 1974, PAGE 420
C
C ABSTRACT
C ZUNHJ COMPUTES PARAMETERS FOR BESSEL FUNCTIONS C(FNU,Z) =
C J(FNU,Z), Y(FNU,Z) OR H(I,FNU,Z) I=1,2 FOR LARGE ORDERS FNU
C BY MEANS OF THE UNIFORM ASYMPTOTIC EXPANSION
C
C C(FNU,Z)=C1*PHI*( ASUM*AIRY(ARG) + C2*BSUM*DAIRY(ARG) )
C
C FOR PROPER CHOICES OF C1, C2, AIRY AND DAIRY WHERE AIRY IS
C AN AIRY FUNCTION AND DAIRY IS ITS DERIVATIVE.
C
C (2/3)*FNU*ZETA**1.5 = ZETA1-ZETA2,
C
C ZETA1=0.5*FNU*CLOG((1+W)/(1-W)), ZETA2=FNU*W FOR SCALING
C PURPOSES IN AIRY FUNCTIONS FROM CAIRY OR CBIRY.
C
C MCONJ=SIGN OF AIMAG(Z), BUT IS AMBIGUOUS WHEN Z IS REAL AND
C MUST BE SPECIFIED. IPMTR=0 RETURNS ALL PARAMETERS. IPMTR=
C 1 COMPUTES ALL EXCEPT ASUM AND BSUM.
C
C***ROUTINES CALLED ZABS,ZDIV,ZLOG,ZSQRT,D1MACH
C***END PROLOGUE ZUNHJ
C COMPLEX ARG,ASUM,BSUM,CFNU,CONE,CR,CZERO,DR,P,PHI,PRZTH,PTFN,
C *RFN13,RTZTA,RZTH,SUMA,SUMB,TFN,T2,UP,W,W2,Z,ZA,ZB,ZC,ZETA,ZETA1,
C *ZETA2,ZTH
DOUBLE PRECISION ALFA, ANG, AP, AR, ARGI, ARGR, ASUMI, ASUMR,
* ATOL, AW2, AZTH, BETA, BR, BSUMI, BSUMR, BTOL, C, CONEI, CONER,
* CRI, CRR, DRI, DRR, EX1, EX2, FNU, FN13, FN23, GAMA, GPI, HPI,
* PHII, PHIR, PI, PP, PR, PRZTHI, PRZTHR, PTFNI, PTFNR, RAW, RAW2,
* RAZTH, RFNU, RFNU2, RFN13, RTZTI, RTZTR, RZTHI, RZTHR, STI, STR,
* SUMAI, SUMAR, SUMBI, SUMBR, TEST, TFNI, TFNR, THPI, TOL, TZAI,
* TZAR, T2I, T2R, UPI, UPR, WI, WR, W2I, W2R, ZAI, ZAR, ZBI, ZBR,
* ZCI, ZCR, ZEROI, ZEROR, ZETAI, ZETAR, ZETA1I, ZETA1R, ZETA2I,
* ZETA2R, ZI, ZR, ZTHI, ZTHR, ZABS, AC, D1MACH
INTEGER IAS, IBS, IPMTR, IS, J, JR, JU, K, KMAX, KP1, KS, L, LR,
* LRP1, L1, L2, M, IDUM
DIMENSION AR(14), BR(14), C(105), ALFA(180), BETA(210), GAMA(30),
* AP(30), PR(30), PI(30), UPR(14), UPI(14), CRR(14), CRI(14),
* DRR(14), DRI(14)
DATA AR(1), AR(2), AR(3), AR(4), AR(5), AR(6), AR(7), AR(8),
1 AR(9), AR(10), AR(11), AR(12), AR(13), AR(14)/
2 1.00000000000000000D+00, 1.04166666666666667D-01,
3 8.35503472222222222D-02, 1.28226574556327160D-01,
4 2.91849026464140464D-01, 8.81627267443757652D-01,
5 3.32140828186276754D+00, 1.49957629868625547D+01,
6 7.89230130115865181D+01, 4.74451538868264323D+02,
7 3.20749009089066193D+03, 2.40865496408740049D+04,
8 1.98923119169509794D+05, 1.79190200777534383D+06/
DATA BR(1), BR(2), BR(3), BR(4), BR(5), BR(6), BR(7), BR(8),
1 BR(9), BR(10), BR(11), BR(12), BR(13), BR(14)/
2 1.00000000000000000D+00, -1.45833333333333333D-01,
3 -9.87413194444444444D-02, -1.43312053915895062D-01,
4 -3.17227202678413548D-01, -9.42429147957120249D-01,
5 -3.51120304082635426D+00, -1.57272636203680451D+01,
6 -8.22814390971859444D+01, -4.92355370523670524D+02,
7 -3.31621856854797251D+03, -2.48276742452085896D+04,
8 -2.04526587315129788D+05, -1.83844491706820990D+06/
DATA C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), C(10),
1 C(11), C(12), C(13), C(14), C(15), C(16), C(17), C(18),
2 C(19), C(20), C(21), C(22), C(23), C(24)/
3 1.00000000000000000D+00, -2.08333333333333333D-01,
4 1.25000000000000000D-01, 3.34201388888888889D-01,
5 -4.01041666666666667D-01, 7.03125000000000000D-02,
6 -1.02581259645061728D+00, 1.84646267361111111D+00,
7 -8.91210937500000000D-01, 7.32421875000000000D-02,
8 4.66958442342624743D+00, -1.12070026162229938D+01,
9 8.78912353515625000D+00, -2.36408691406250000D+00,
A 1.12152099609375000D-01, -2.82120725582002449D+01,
B 8.46362176746007346D+01, -9.18182415432400174D+01,
C 4.25349987453884549D+01, -7.36879435947963170D+00,
D 2.27108001708984375D-01, 2.12570130039217123D+02,
E -7.65252468141181642D+02, 1.05999045252799988D+03/
DATA C(25), C(26), C(27), C(28), C(29), C(30), C(31), C(32),
1 C(33), C(34), C(35), C(36), C(37), C(38), C(39), C(40),
2 C(41), C(42), C(43), C(44), C(45), C(46), C(47), C(48)/
3 -6.99579627376132541D+02, 2.18190511744211590D+02,
4 -2.64914304869515555D+01, 5.72501420974731445D-01,
5 -1.91945766231840700D+03, 8.06172218173730938D+03,
6 -1.35865500064341374D+04, 1.16553933368645332D+04,
7 -5.30564697861340311D+03, 1.20090291321635246D+03,
8 -1.08090919788394656D+02, 1.72772750258445740D+00,
9 2.02042913309661486D+04, -9.69805983886375135D+04,
A 1.92547001232531532D+05, -2.03400177280415534D+05,
B 1.22200464983017460D+05, -4.11926549688975513D+04,
C 7.10951430248936372D+03, -4.93915304773088012D+02,
D 6.07404200127348304D+00, -2.42919187900551333D+05,
E 1.31176361466297720D+06, -2.99801591853810675D+06/
DATA C(49), C(50), C(51), C(52), C(53), C(54), C(55), C(56),
1 C(57), C(58), C(59), C(60), C(61), C(62), C(63), C(64),
2 C(65), C(66), C(67), C(68), C(69), C(70), C(71), C(72)/
3 3.76327129765640400D+06, -2.81356322658653411D+06,
4 1.26836527332162478D+06, -3.31645172484563578D+05,
5 4.52187689813627263D+04, -2.49983048181120962D+03,
6 2.43805296995560639D+01, 3.28446985307203782D+06,
7 -1.97068191184322269D+07, 5.09526024926646422D+07,
8 -7.41051482115326577D+07, 6.63445122747290267D+07,
9 -3.75671766607633513D+07, 1.32887671664218183D+07,
A -2.78561812808645469D+06, 3.08186404612662398D+05,
B -1.38860897537170405D+04, 1.10017140269246738D+02,
C -4.93292536645099620D+07, 3.25573074185765749D+08,
D -9.39462359681578403D+08, 1.55359689957058006D+09,
E -1.62108055210833708D+09, 1.10684281682301447D+09/
DATA C(73), C(74), C(75), C(76), C(77), C(78), C(79), C(80),
1 C(81), C(82), C(83), C(84), C(85), C(86), C(87), C(88),
2 C(89), C(90), C(91), C(92), C(93), C(94), C(95), C(96)/
3 -4.95889784275030309D+08, 1.42062907797533095D+08,
4 -2.44740627257387285D+07, 2.24376817792244943D+06,
5 -8.40054336030240853D+04, 5.51335896122020586D+02,
6 8.14789096118312115D+08, -5.86648149205184723D+09,
7 1.86882075092958249D+10, -3.46320433881587779D+10,
8 4.12801855797539740D+10, -3.30265997498007231D+10,
9 1.79542137311556001D+10, -6.56329379261928433D+09,
A 1.55927986487925751D+09, -2.25105661889415278D+08,
B 1.73951075539781645D+07, -5.49842327572288687D+05,
C 3.03809051092238427D+03, -1.46792612476956167D+10,
D 1.14498237732025810D+11, -3.99096175224466498D+11,
E 8.19218669548577329D+11, -1.09837515608122331D+12/
DATA C(97), C(98), C(99), C(100), C(101), C(102), C(103), C(104),
1 C(105)/
2 1.00815810686538209D+12, -6.45364869245376503D+11,
3 2.87900649906150589D+11, -8.78670721780232657D+10,
4 1.76347306068349694D+10, -2.16716498322379509D+09,
5 1.43157876718888981D+08, -3.87183344257261262D+06,
6 1.82577554742931747D+04/
DATA ALFA(1), ALFA(2), ALFA(3), ALFA(4), ALFA(5), ALFA(6),
1 ALFA(7), ALFA(8), ALFA(9), ALFA(10), ALFA(11), ALFA(12),
2 ALFA(13), ALFA(14), ALFA(15), ALFA(16), ALFA(17), ALFA(18),
3 ALFA(19), ALFA(20), ALFA(21), ALFA(22)/
4 -4.44444444444444444D-03, -9.22077922077922078D-04,
5 -8.84892884892884893D-05, 1.65927687832449737D-04,
6 2.46691372741792910D-04, 2.65995589346254780D-04,
7 2.61824297061500945D-04, 2.48730437344655609D-04,
8 2.32721040083232098D-04, 2.16362485712365082D-04,
9 2.00738858762752355D-04, 1.86267636637545172D-04,
A 1.73060775917876493D-04, 1.61091705929015752D-04,
B 1.50274774160908134D-04, 1.40503497391269794D-04,
C 1.31668816545922806D-04, 1.23667445598253261D-04,
D 1.16405271474737902D-04, 1.09798298372713369D-04,
E 1.03772410422992823D-04, 9.82626078369363448D-05/
DATA ALFA(23), ALFA(24), ALFA(25), ALFA(26), ALFA(27), ALFA(28),
1 ALFA(29), ALFA(30), ALFA(31), ALFA(32), ALFA(33), ALFA(34),
2 ALFA(35), ALFA(36), ALFA(37), ALFA(38), ALFA(39), ALFA(40),
3 ALFA(41), ALFA(42), ALFA(43), ALFA(44)/
4 9.32120517249503256D-05, 8.85710852478711718D-05,
5 8.42963105715700223D-05, 8.03497548407791151D-05,
6 7.66981345359207388D-05, 7.33122157481777809D-05,
7 7.01662625163141333D-05, 6.72375633790160292D-05,
8 6.93735541354588974D-04, 2.32241745182921654D-04,
9 -1.41986273556691197D-05, -1.16444931672048640D-04,
A -1.50803558053048762D-04, -1.55121924918096223D-04,
B -1.46809756646465549D-04, -1.33815503867491367D-04,
C -1.19744975684254051D-04, -1.06184319207974020D-04,
D -9.37699549891194492D-05, -8.26923045588193274D-05,
E -7.29374348155221211D-05, -6.44042357721016283D-05/
DATA ALFA(45), ALFA(46), ALFA(47), ALFA(48), ALFA(49), ALFA(50),
1 ALFA(51), ALFA(52), ALFA(53), ALFA(54), ALFA(55), ALFA(56),
2 ALFA(57), ALFA(58), ALFA(59), ALFA(60), ALFA(61), ALFA(62),
3 ALFA(63), ALFA(64), ALFA(65), ALFA(66)/
4 -5.69611566009369048D-05, -5.04731044303561628D-05,
5 -4.48134868008882786D-05, -3.98688727717598864D-05,
6 -3.55400532972042498D-05, -3.17414256609022480D-05,
7 -2.83996793904174811D-05, -2.54522720634870566D-05,
8 -2.28459297164724555D-05, -2.05352753106480604D-05,
9 -1.84816217627666085D-05, -1.66519330021393806D-05,
A -1.50179412980119482D-05, -1.35554031379040526D-05,
B -1.22434746473858131D-05, -1.10641884811308169D-05,
C -3.54211971457743841D-04, -1.56161263945159416D-04,
D 3.04465503594936410D-05, 1.30198655773242693D-04,
E 1.67471106699712269D-04, 1.70222587683592569D-04/
DATA ALFA(67), ALFA(68), ALFA(69), ALFA(70), ALFA(71), ALFA(72),
1 ALFA(73), ALFA(74), ALFA(75), ALFA(76), ALFA(77), ALFA(78),
2 ALFA(79), ALFA(80), ALFA(81), ALFA(82), ALFA(83), ALFA(84),
3 ALFA(85), ALFA(86), ALFA(87), ALFA(88)/
4 1.56501427608594704D-04, 1.36339170977445120D-04,
5 1.14886692029825128D-04, 9.45869093034688111D-05,
6 7.64498419250898258D-05, 6.07570334965197354D-05,
7 4.74394299290508799D-05, 3.62757512005344297D-05,
8 2.69939714979224901D-05, 1.93210938247939253D-05,
9 1.30056674793963203D-05, 7.82620866744496661D-06,
A 3.59257485819351583D-06, 1.44040049814251817D-07,
B -2.65396769697939116D-06, -4.91346867098485910D-06,
C -6.72739296091248287D-06, -8.17269379678657923D-06,
D -9.31304715093561232D-06, -1.02011418798016441D-05,
E -1.08805962510592880D-05, -1.13875481509603555D-05/
DATA ALFA(89), ALFA(90), ALFA(91), ALFA(92), ALFA(93), ALFA(94),
1 ALFA(95), ALFA(96), ALFA(97), ALFA(98), ALFA(99), ALFA(100),
2 ALFA(101), ALFA(102), ALFA(103), ALFA(104), ALFA(105),
3 ALFA(106), ALFA(107), ALFA(108), ALFA(109), ALFA(110)/
4 -1.17519675674556414D-05, -1.19987364870944141D-05,
5 3.78194199201772914D-04, 2.02471952761816167D-04,
6 -6.37938506318862408D-05, -2.38598230603005903D-04,
7 -3.10916256027361568D-04, -3.13680115247576316D-04,
8 -2.78950273791323387D-04, -2.28564082619141374D-04,
9 -1.75245280340846749D-04, -1.25544063060690348D-04,
A -8.22982872820208365D-05, -4.62860730588116458D-05,
B -1.72334302366962267D-05, 5.60690482304602267D-06,
C 2.31395443148286800D-05, 3.62642745856793957D-05,
D 4.58006124490188752D-05, 5.24595294959114050D-05,
E 5.68396208545815266D-05, 5.94349820393104052D-05/
DATA ALFA(111), ALFA(112), ALFA(113), ALFA(114), ALFA(115),
1 ALFA(116), ALFA(117), ALFA(118), ALFA(119), ALFA(120),
2 ALFA(121), ALFA(122), ALFA(123), ALFA(124), ALFA(125),
3 ALFA(126), ALFA(127), ALFA(128), ALFA(129), ALFA(130)/
4 6.06478527578421742D-05, 6.08023907788436497D-05,
5 6.01577894539460388D-05, 5.89199657344698500D-05,
6 5.72515823777593053D-05, 5.52804375585852577D-05,
7 5.31063773802880170D-05, 5.08069302012325706D-05,
8 4.84418647620094842D-05, 4.60568581607475370D-05,
9 -6.91141397288294174D-04, -4.29976633058871912D-04,
A 1.83067735980039018D-04, 6.60088147542014144D-04,
B 8.75964969951185931D-04, 8.77335235958235514D-04,
C 7.49369585378990637D-04, 5.63832329756980918D-04,
D 3.68059319971443156D-04, 1.88464535514455599D-04/
DATA ALFA(131), ALFA(132), ALFA(133), ALFA(134), ALFA(135),
1 ALFA(136), ALFA(137), ALFA(138), ALFA(139), ALFA(140),
2 ALFA(141), ALFA(142), ALFA(143), ALFA(144), ALFA(145),
3 ALFA(146), ALFA(147), ALFA(148), ALFA(149), ALFA(150)/
4 3.70663057664904149D-05, -8.28520220232137023D-05,
5 -1.72751952869172998D-04, -2.36314873605872983D-04,
6 -2.77966150694906658D-04, -3.02079514155456919D-04,
7 -3.12594712643820127D-04, -3.12872558758067163D-04,
8 -3.05678038466324377D-04, -2.93226470614557331D-04,
9 -2.77255655582934777D-04, -2.59103928467031709D-04,
A -2.39784014396480342D-04, -2.20048260045422848D-04,
B -2.00443911094971498D-04, -1.81358692210970687D-04,
C -1.63057674478657464D-04, -1.45712672175205844D-04,
D -1.29425421983924587D-04, -1.14245691942445952D-04/
DATA ALFA(151), ALFA(152), ALFA(153), ALFA(154), ALFA(155),
1 ALFA(156), ALFA(157), ALFA(158), ALFA(159), ALFA(160),
2 ALFA(161), ALFA(162), ALFA(163), ALFA(164), ALFA(165),
3 ALFA(166), ALFA(167), ALFA(168), ALFA(169), ALFA(170)/
4 1.92821964248775885D-03, 1.35592576302022234D-03,
5 -7.17858090421302995D-04, -2.58084802575270346D-03,
6 -3.49271130826168475D-03, -3.46986299340960628D-03,
7 -2.82285233351310182D-03, -1.88103076404891354D-03,
8 -8.89531718383947600D-04, 3.87912102631035228D-06,
9 7.28688540119691412D-04, 1.26566373053457758D-03,
A 1.62518158372674427D-03, 1.83203153216373172D-03,
B 1.91588388990527909D-03, 1.90588846755546138D-03,
C 1.82798982421825727D-03, 1.70389506421121530D-03,
D 1.55097127171097686D-03, 1.38261421852276159D-03/
DATA ALFA(171), ALFA(172), ALFA(173), ALFA(174), ALFA(175),
1 ALFA(176), ALFA(177), ALFA(178), ALFA(179), ALFA(180)/
2 1.20881424230064774D-03, 1.03676532638344962D-03,
3 8.71437918068619115D-04, 7.16080155297701002D-04,
4 5.72637002558129372D-04, 4.42089819465802277D-04,
5 3.24724948503090564D-04, 2.20342042730246599D-04,
6 1.28412898401353882D-04, 4.82005924552095464D-05/
DATA BETA(1), BETA(2), BETA(3), BETA(4), BETA(5), BETA(6),
1 BETA(7), BETA(8), BETA(9), BETA(10), BETA(11), BETA(12),
2 BETA(13), BETA(14), BETA(15), BETA(16), BETA(17), BETA(18),
3 BETA(19), BETA(20), BETA(21), BETA(22)/
4 1.79988721413553309D-02, 5.59964911064388073D-03,
5 2.88501402231132779D-03, 1.80096606761053941D-03,
6 1.24753110589199202D-03, 9.22878876572938311D-04,
7 7.14430421727287357D-04, 5.71787281789704872D-04,
8 4.69431007606481533D-04, 3.93232835462916638D-04,
9 3.34818889318297664D-04, 2.88952148495751517D-04,
A 2.52211615549573284D-04, 2.22280580798883327D-04,
B 1.97541838033062524D-04, 1.76836855019718004D-04,
C 1.59316899661821081D-04, 1.44347930197333986D-04,
D 1.31448068119965379D-04, 1.20245444949302884D-04,
E 1.10449144504599392D-04, 1.01828770740567258D-04/
DATA BETA(23), BETA(24), BETA(25), BETA(26), BETA(27), BETA(28),
1 BETA(29), BETA(30), BETA(31), BETA(32), BETA(33), BETA(34),
2 BETA(35), BETA(36), BETA(37), BETA(38), BETA(39), BETA(40),
3 BETA(41), BETA(42), BETA(43), BETA(44)/
4 9.41998224204237509D-05, 8.74130545753834437D-05,
5 8.13466262162801467D-05, 7.59002269646219339D-05,
6 7.09906300634153481D-05, 6.65482874842468183D-05,
7 6.25146958969275078D-05, 5.88403394426251749D-05,
8 -1.49282953213429172D-03, -8.78204709546389328D-04,
9 -5.02916549572034614D-04, -2.94822138512746025D-04,
A -1.75463996970782828D-04, -1.04008550460816434D-04,
B -5.96141953046457895D-05, -3.12038929076098340D-05,
C -1.26089735980230047D-05, -2.42892608575730389D-07,
D 8.05996165414273571D-06, 1.36507009262147391D-05,
E 1.73964125472926261D-05, 1.98672978842133780D-05/
DATA BETA(45), BETA(46), BETA(47), BETA(48), BETA(49), BETA(50),
1 BETA(51), BETA(52), BETA(53), BETA(54), BETA(55), BETA(56),
2 BETA(57), BETA(58), BETA(59), BETA(60), BETA(61), BETA(62),
3 BETA(63), BETA(64), BETA(65), BETA(66)/
4 2.14463263790822639D-05, 2.23954659232456514D-05,
5 2.28967783814712629D-05, 2.30785389811177817D-05,
6 2.30321976080909144D-05, 2.28236073720348722D-05,
7 2.25005881105292418D-05, 2.20981015361991429D-05,
8 2.16418427448103905D-05, 2.11507649256220843D-05,
9 2.06388749782170737D-05, 2.01165241997081666D-05,
A 1.95913450141179244D-05, 1.90689367910436740D-05,
B 1.85533719641636667D-05, 1.80475722259674218D-05,
C 5.52213076721292790D-04, 4.47932581552384646D-04,
D 2.79520653992020589D-04, 1.52468156198446602D-04,
E 6.93271105657043598D-05, 1.76258683069991397D-05/
DATA BETA(67), BETA(68), BETA(69), BETA(70), BETA(71), BETA(72),
1 BETA(73), BETA(74), BETA(75), BETA(76), BETA(77), BETA(78),
2 BETA(79), BETA(80), BETA(81), BETA(82), BETA(83), BETA(84),
3 BETA(85), BETA(86), BETA(87), BETA(88)/
4 -1.35744996343269136D-05, -3.17972413350427135D-05,
5 -4.18861861696693365D-05, -4.69004889379141029D-05,
6 -4.87665447413787352D-05, -4.87010031186735069D-05,
7 -4.74755620890086638D-05, -4.55813058138628452D-05,
8 -4.33309644511266036D-05, -4.09230193157750364D-05,
9 -3.84822638603221274D-05, -3.60857167535410501D-05,
A -3.37793306123367417D-05, -3.15888560772109621D-05,
B -2.95269561750807315D-05, -2.75978914828335759D-05,
C -2.58006174666883713D-05, -2.41308356761280200D-05,
D -2.25823509518346033D-05, -2.11479656768912971D-05,
E -1.98200638885294927D-05, -1.85909870801065077D-05/
DATA BETA(89), BETA(90), BETA(91), BETA(92), BETA(93), BETA(94),
1 BETA(95), BETA(96), BETA(97), BETA(98), BETA(99), BETA(100),
2 BETA(101), BETA(102), BETA(103), BETA(104), BETA(105),
3 BETA(106), BETA(107), BETA(108), BETA(109), BETA(110)/
4 -1.74532699844210224D-05, -1.63997823854497997D-05,
5 -4.74617796559959808D-04, -4.77864567147321487D-04,
6 -3.20390228067037603D-04, -1.61105016119962282D-04,
7 -4.25778101285435204D-05, 3.44571294294967503D-05,
8 7.97092684075674924D-05, 1.03138236708272200D-04,
9 1.12466775262204158D-04, 1.13103642108481389D-04,
A 1.08651634848774268D-04, 1.01437951597661973D-04,
B 9.29298396593363896D-05, 8.40293133016089978D-05,
C 7.52727991349134062D-05, 6.69632521975730872D-05,
D 5.92564547323194704D-05, 5.22169308826975567D-05,
E 4.58539485165360646D-05, 4.01445513891486808D-05/
DATA BETA(111), BETA(112), BETA(113), BETA(114), BETA(115),
1 BETA(116), BETA(117), BETA(118), BETA(119), BETA(120),
2 BETA(121), BETA(122), BETA(123), BETA(124), BETA(125),
3 BETA(126), BETA(127), BETA(128), BETA(129), BETA(130)/
4 3.50481730031328081D-05, 3.05157995034346659D-05,
5 2.64956119950516039D-05, 2.29363633690998152D-05,
6 1.97893056664021636D-05, 1.70091984636412623D-05,
7 1.45547428261524004D-05, 1.23886640995878413D-05,
8 1.04775876076583236D-05, 8.79179954978479373D-06,
9 7.36465810572578444D-04, 8.72790805146193976D-04,
A 6.22614862573135066D-04, 2.85998154194304147D-04,
B 3.84737672879366102D-06, -1.87906003636971558D-04,
C -2.97603646594554535D-04, -3.45998126832656348D-04,
D -3.53382470916037712D-04, -3.35715635775048757D-04/
DATA BETA(131), BETA(132), BETA(133), BETA(134), BETA(135),
1 BETA(136), BETA(137), BETA(138), BETA(139), BETA(140),
2 BETA(141), BETA(142), BETA(143), BETA(144), BETA(145),
3 BETA(146), BETA(147), BETA(148), BETA(149), BETA(150)/
4 -3.04321124789039809D-04, -2.66722723047612821D-04,
5 -2.27654214122819527D-04, -1.89922611854562356D-04,
6 -1.55058918599093870D-04, -1.23778240761873630D-04,
7 -9.62926147717644187D-05, -7.25178327714425337D-05,
8 -5.22070028895633801D-05, -3.50347750511900522D-05,
9 -2.06489761035551757D-05, -8.70106096849767054D-06,
A 1.13698686675100290D-06, 9.16426474122778849D-06,
B 1.56477785428872620D-05, 2.08223629482466847D-05,
C 2.48923381004595156D-05, 2.80340509574146325D-05,
D 3.03987774629861915D-05, 3.21156731406700616D-05/
DATA BETA(151), BETA(152), BETA(153), BETA(154), BETA(155),
1 BETA(156), BETA(157), BETA(158), BETA(159), BETA(160),
2 BETA(161), BETA(162), BETA(163), BETA(164), BETA(165),
3 BETA(166), BETA(167), BETA(168), BETA(169), BETA(170)/
4 -1.80182191963885708D-03, -2.43402962938042533D-03,
5 -1.83422663549856802D-03, -7.62204596354009765D-04,
6 2.39079475256927218D-04, 9.49266117176881141D-04,
7 1.34467449701540359D-03, 1.48457495259449178D-03,
8 1.44732339830617591D-03, 1.30268261285657186D-03,
9 1.10351597375642682D-03, 8.86047440419791759D-04,
A 6.73073208165665473D-04, 4.77603872856582378D-04,
B 3.05991926358789362D-04, 1.60315694594721630D-04,
C 4.00749555270613286D-05, -5.66607461635251611D-05,
D -1.32506186772982638D-04, -1.90296187989614057D-04/
DATA BETA(171), BETA(172), BETA(173), BETA(174), BETA(175),
1 BETA(176), BETA(177), BETA(178), BETA(179), BETA(180),
2 BETA(181), BETA(182), BETA(183), BETA(184), BETA(185),
3 BETA(186), BETA(187), BETA(188), BETA(189), BETA(190)/
4 -2.32811450376937408D-04, -2.62628811464668841D-04,
5 -2.82050469867598672D-04, -2.93081563192861167D-04,
6 -2.97435962176316616D-04, -2.96557334239348078D-04,
7 -2.91647363312090861D-04, -2.83696203837734166D-04,
8 -2.73512317095673346D-04, -2.61750155806768580D-04,
9 6.38585891212050914D-03, 9.62374215806377941D-03,
A 7.61878061207001043D-03, 2.83219055545628054D-03,
B -2.09841352012720090D-03, -5.73826764216626498D-03,
C -7.70804244495414620D-03, -8.21011692264844401D-03,
D -7.65824520346905413D-03, -6.47209729391045177D-03/
DATA BETA(191), BETA(192), BETA(193), BETA(194), BETA(195),
1 BETA(196), BETA(197), BETA(198), BETA(199), BETA(200),
2 BETA(201), BETA(202), BETA(203), BETA(204), BETA(205),
3 BETA(206), BETA(207), BETA(208), BETA(209), BETA(210)/
4 -4.99132412004966473D-03, -3.45612289713133280D-03,
5 -2.01785580014170775D-03, -7.59430686781961401D-04,
6 2.84173631523859138D-04, 1.10891667586337403D-03,
7 1.72901493872728771D-03, 2.16812590802684701D-03,
8 2.45357710494539735D-03, 2.61281821058334862D-03,
9 2.67141039656276912D-03, 2.65203073395980430D-03,
A 2.57411652877287315D-03, 2.45389126236094427D-03,
B 2.30460058071795494D-03, 2.13684837686712662D-03,
C 1.95896528478870911D-03, 1.77737008679454412D-03,
D 1.59690280765839059D-03, 1.42111975664438546D-03/
DATA GAMA(1), GAMA(2), GAMA(3), GAMA(4), GAMA(5), GAMA(6),
1 GAMA(7), GAMA(8), GAMA(9), GAMA(10), GAMA(11), GAMA(12),
2 GAMA(13), GAMA(14), GAMA(15), GAMA(16), GAMA(17), GAMA(18),
3 GAMA(19), GAMA(20), GAMA(21), GAMA(22)/
4 6.29960524947436582D-01, 2.51984209978974633D-01,
5 1.54790300415655846D-01, 1.10713062416159013D-01,
6 8.57309395527394825D-02, 6.97161316958684292D-02,
7 5.86085671893713576D-02, 5.04698873536310685D-02,
8 4.42600580689154809D-02, 3.93720661543509966D-02,
9 3.54283195924455368D-02, 3.21818857502098231D-02,
A 2.94646240791157679D-02, 2.71581677112934479D-02,
B 2.51768272973861779D-02, 2.34570755306078891D-02,
C 2.19508390134907203D-02, 2.06210828235646240D-02,
D 1.94388240897880846D-02, 1.83810633800683158D-02,
E 1.74293213231963172D-02, 1.65685837786612353D-02/
DATA GAMA(23), GAMA(24), GAMA(25), GAMA(26), GAMA(27), GAMA(28),
1 GAMA(29), GAMA(30)/
2 1.57865285987918445D-02, 1.50729501494095594D-02,
3 1.44193250839954639D-02, 1.38184805735341786D-02,
4 1.32643378994276568D-02, 1.27517121970498651D-02,
5 1.22761545318762767D-02, 1.18338262398482403D-02/
DATA EX1, EX2, HPI, GPI, THPI /
1 3.33333333333333333D-01, 6.66666666666666667D-01,
2 1.57079632679489662D+00, 3.14159265358979324D+00,
3 4.71238898038468986D+00/
DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 /
C
RFNU = 1.0D0/FNU
C-----------------------------------------------------------------------
C OVERFLOW TEST (Z/FNU TOO SMALL)
C-----------------------------------------------------------------------
TEST = D1MACH(1)*1.0D+3
AC = FNU*TEST
IF (DABS(ZR).GT.AC .OR. DABS(ZI).GT.AC) GO TO 15
ZETA1R = 2.0D0*DABS(DLOG(TEST))+FNU
ZETA1I = 0.0D0
ZETA2R = FNU
ZETA2I = 0.0D0
PHIR = 1.0D0
PHII = 0.0D0
ARGR = 1.0D0
ARGI = 0.0D0
RETURN
15 CONTINUE
ZBR = ZR*RFNU
ZBI = ZI*RFNU
RFNU2 = RFNU*RFNU
C-----------------------------------------------------------------------
C COMPUTE IN THE FOURTH QUADRANT
C-----------------------------------------------------------------------
FN13 = FNU**EX1
FN23 = FN13*FN13
RFN13 = 1.0D0/FN13
W2R = CONER - ZBR*ZBR + ZBI*ZBI
W2I = CONEI - ZBR*ZBI - ZBR*ZBI
AW2 = ZABS(COMPLEX(W2R,W2I))
IF (AW2.GT.0.25D0) GO TO 130
C-----------------------------------------------------------------------
C POWER SERIES FOR CABS(W2).LE.0.25D0
C-----------------------------------------------------------------------
K = 1
PR(1) = CONER
PI(1) = CONEI
SUMAR = GAMA(1)
SUMAI = ZEROI
AP(1) = 1.0D0
IF (AW2.LT.TOL) GO TO 20
DO 10 K=2,30
PR(K) = PR(K-1)*W2R - PI(K-1)*W2I
PI(K) = PR(K-1)*W2I + PI(K-1)*W2R
SUMAR = SUMAR + PR(K)*GAMA(K)
SUMAI = SUMAI + PI(K)*GAMA(K)
AP(K) = AP(K-1)*AW2
IF (AP(K).LT.TOL) GO TO 20
10 CONTINUE
K = 30
20 CONTINUE
KMAX = K
ZETAR = W2R*SUMAR - W2I*SUMAI
ZETAI = W2R*SUMAI + W2I*SUMAR
ARGR = ZETAR*FN23
ARGI = ZETAI*FN23
CALL ZSQRT(SUMAR, SUMAI, ZAR, ZAI)
CALL ZSQRT(W2R, W2I, STR, STI)
ZETA2R = STR*FNU
ZETA2I = STI*FNU
STR = CONER + EX2*(ZETAR*ZAR-ZETAI*ZAI)
STI = CONEI + EX2*(ZETAR*ZAI+ZETAI*ZAR)
ZETA1R = STR*ZETA2R - STI*ZETA2I
ZETA1I = STR*ZETA2I + STI*ZETA2R
ZAR = ZAR + ZAR
ZAI = ZAI + ZAI
CALL ZSQRT(ZAR, ZAI, STR, STI)
PHIR = STR*RFN13
PHII = STI*RFN13
IF (IPMTR.EQ.1) GO TO 120
C-----------------------------------------------------------------------
C SUM SERIES FOR ASUM AND BSUM
C-----------------------------------------------------------------------
SUMBR = ZEROR
SUMBI = ZEROI
DO 30 K=1,KMAX
SUMBR = SUMBR + PR(K)*BETA(K)
SUMBI = SUMBI + PI(K)*BETA(K)
30 CONTINUE
ASUMR = ZEROR
ASUMI = ZEROI
BSUMR = SUMBR
BSUMI = SUMBI
L1 = 0
L2 = 30
BTOL = TOL*(DABS(BSUMR)+DABS(BSUMI))
ATOL = TOL
PP = 1.0D0
IAS = 0
IBS = 0
IF (RFNU2.LT.TOL) GO TO 110
DO 100 IS=2,7
ATOL = ATOL/RFNU2
PP = PP*RFNU2
IF (IAS.EQ.1) GO TO 60
SUMAR = ZEROR
SUMAI = ZEROI
DO 40 K=1,KMAX
M = L1 + K
SUMAR = SUMAR + PR(K)*ALFA(M)
SUMAI = SUMAI + PI(K)*ALFA(M)
IF (AP(K).LT.ATOL) GO TO 50
40 CONTINUE
50 CONTINUE
ASUMR = ASUMR + SUMAR*PP
ASUMI = ASUMI + SUMAI*PP
IF (PP.LT.TOL) IAS = 1
60 CONTINUE
IF (IBS.EQ.1) GO TO 90
SUMBR = ZEROR
SUMBI = ZEROI
DO 70 K=1,KMAX
M = L2 + K
SUMBR = SUMBR + PR(K)*BETA(M)
SUMBI = SUMBI + PI(K)*BETA(M)
IF (AP(K).LT.ATOL) GO TO 80
70 CONTINUE
80 CONTINUE
BSUMR = BSUMR + SUMBR*PP
BSUMI = BSUMI + SUMBI*PP
IF (PP.LT.BTOL) IBS = 1
90 CONTINUE
IF (IAS.EQ.1 .AND. IBS.EQ.1) GO TO 110
L1 = L1 + 30
L2 = L2 + 30
100 CONTINUE
110 CONTINUE
ASUMR = ASUMR + CONER
PP = RFNU*RFN13
BSUMR = BSUMR*PP
BSUMI = BSUMI*PP
120 CONTINUE
RETURN
C-----------------------------------------------------------------------
C CABS(W2).GT.0.25D0
C-----------------------------------------------------------------------
130 CONTINUE
CALL ZSQRT(W2R, W2I, WR, WI)
IF (WR.LT.0.0D0) WR = 0.0D0
IF (WI.LT.0.0D0) WI = 0.0D0
STR = CONER + WR
STI = WI
CALL ZDIV(STR, STI, ZBR, ZBI, ZAR, ZAI)
CALL ZLOG(ZAR, ZAI, ZCR, ZCI, IDUM)
IF (ZCI.LT.0.0D0) ZCI = 0.0D0
IF (ZCI.GT.HPI) ZCI = HPI
IF (ZCR.LT.0.0D0) ZCR = 0.0D0
ZTHR = (ZCR-WR)*1.5D0
ZTHI = (ZCI-WI)*1.5D0
ZETA1R = ZCR*FNU
ZETA1I = ZCI*FNU
ZETA2R = WR*FNU
ZETA2I = WI*FNU
AZTH = ZABS(COMPLEX(ZTHR,ZTHI))
ANG = THPI
IF (ZTHR.GE.0.0D0 .AND. ZTHI.LT.0.0D0) GO TO 140
ANG = HPI
IF (ZTHR.EQ.0.0D0) GO TO 140
ANG = DATAN(ZTHI/ZTHR)
IF (ZTHR.LT.0.0D0) ANG = ANG + GPI
140 CONTINUE
PP = AZTH**EX2
ANG = ANG*EX2
ZETAR = PP*DCOS(ANG)
ZETAI = PP*DSIN(ANG)
IF (ZETAI.LT.0.0D0) ZETAI = 0.0D0
ARGR = ZETAR*FN23
ARGI = ZETAI*FN23
CALL ZDIV(ZTHR, ZTHI, ZETAR, ZETAI, RTZTR, RTZTI)
CALL ZDIV(RTZTR, RTZTI, WR, WI, ZAR, ZAI)
TZAR = ZAR + ZAR
TZAI = ZAI + ZAI
CALL ZSQRT(TZAR, TZAI, STR, STI)
PHIR = STR*RFN13
PHII = STI*RFN13
IF (IPMTR.EQ.1) GO TO 120
RAW = 1.0D0/DSQRT(AW2)
STR = WR*RAW
STI = -WI*RAW
TFNR = STR*RFNU*RAW
TFNI = STI*RFNU*RAW
RAZTH = 1.0D0/AZTH
STR = ZTHR*RAZTH
STI = -ZTHI*RAZTH
RZTHR = STR*RAZTH*RFNU
RZTHI = STI*RAZTH*RFNU
ZCR = RZTHR*AR(2)
ZCI = RZTHI*AR(2)
RAW2 = 1.0D0/AW2
STR = W2R*RAW2
STI = -W2I*RAW2
T2R = STR*RAW2
T2I = STI*RAW2
STR = T2R*C(2) + C(3)
STI = T2I*C(2)
UPR(2) = STR*TFNR - STI*TFNI
UPI(2) = STR*TFNI + STI*TFNR
BSUMR = UPR(2) + ZCR
BSUMI = UPI(2) + ZCI
ASUMR = ZEROR
ASUMI = ZEROI
IF (RFNU.LT.TOL) GO TO 220
PRZTHR = RZTHR
PRZTHI = RZTHI
PTFNR = TFNR
PTFNI = TFNI
UPR(1) = CONER
UPI(1) = CONEI
PP = 1.0D0
BTOL = TOL*(DABS(BSUMR)+DABS(BSUMI))
KS = 0
KP1 = 2
L = 3
IAS = 0
IBS = 0
DO 210 LR=2,12,2
LRP1 = LR + 1
C-----------------------------------------------------------------------
C COMPUTE TWO ADDITIONAL CR, DR, AND UP FOR TWO MORE TERMS IN
C NEXT SUMA AND SUMB
C-----------------------------------------------------------------------
DO 160 K=LR,LRP1
KS = KS + 1
KP1 = KP1 + 1
L = L + 1
ZAR = C(L)
ZAI = ZEROI
DO 150 J=2,KP1
L = L + 1
STR = ZAR*T2R - T2I*ZAI + C(L)
ZAI = ZAR*T2I + ZAI*T2R
ZAR = STR
150 CONTINUE
STR = PTFNR*TFNR - PTFNI*TFNI
PTFNI = PTFNR*TFNI + PTFNI*TFNR
PTFNR = STR
UPR(KP1) = PTFNR*ZAR - PTFNI*ZAI
UPI(KP1) = PTFNI*ZAR + PTFNR*ZAI
CRR(KS) = PRZTHR*BR(KS+1)
CRI(KS) = PRZTHI*BR(KS+1)
STR = PRZTHR*RZTHR - PRZTHI*RZTHI
PRZTHI = PRZTHR*RZTHI + PRZTHI*RZTHR
PRZTHR = STR
DRR(KS) = PRZTHR*AR(KS+2)
DRI(KS) = PRZTHI*AR(KS+2)
160 CONTINUE
PP = PP*RFNU2
IF (IAS.EQ.1) GO TO 180
SUMAR = UPR(LRP1)
SUMAI = UPI(LRP1)
JU = LRP1
DO 170 JR=1,LR
JU = JU - 1
SUMAR = SUMAR + CRR(JR)*UPR(JU) - CRI(JR)*UPI(JU)
SUMAI = SUMAI + CRR(JR)*UPI(JU) + CRI(JR)*UPR(JU)
170 CONTINUE
ASUMR = ASUMR + SUMAR
ASUMI = ASUMI + SUMAI
TEST = DABS(SUMAR) + DABS(SUMAI)
IF (PP.LT.TOL .AND. TEST.LT.TOL) IAS = 1
180 CONTINUE
IF (IBS.EQ.1) GO TO 200
SUMBR = UPR(LR+2) + UPR(LRP1)*ZCR - UPI(LRP1)*ZCI
SUMBI = UPI(LR+2) + UPR(LRP1)*ZCI + UPI(LRP1)*ZCR
JU = LRP1
DO 190 JR=1,LR
JU = JU - 1
SUMBR = SUMBR + DRR(JR)*UPR(JU) - DRI(JR)*UPI(JU)
SUMBI = SUMBI + DRR(JR)*UPI(JU) + DRI(JR)*UPR(JU)
190 CONTINUE
BSUMR = BSUMR + SUMBR
BSUMI = BSUMI + SUMBI
TEST = DABS(SUMBR) + DABS(SUMBI)
IF (PP.LT.BTOL .AND. TEST.LT.BTOL) IBS = 1
200 CONTINUE
IF (IAS.EQ.1 .AND. IBS.EQ.1) GO TO 220
210 CONTINUE
220 CONTINUE
ASUMR = ASUMR + CONER
STR = -BSUMR*RFN13
STI = -BSUMI*RFN13
CALL ZDIV(STR, STI, RTZTR, RTZTI, BSUMR, BSUMI)
GO TO 120
END

View file

@ -1,204 +0,0 @@
SUBROUTINE ZUNI1(ZR, ZI, FNU, KODE, N, YR, YI, NZ, NLAST, FNUL,
* TOL, ELIM, ALIM)
C***BEGIN PROLOGUE ZUNI1
C***REFER TO ZBESI,ZBESK
C
C ZUNI1 COMPUTES I(FNU,Z) BY MEANS OF THE UNIFORM ASYMPTOTIC
C EXPANSION FOR I(FNU,Z) IN -PI/3.LE.ARG Z.LE.PI/3.
C
C FNUL IS THE SMALLEST ORDER PERMITTED FOR THE ASYMPTOTIC
C EXPANSION. NLAST=0 MEANS ALL OF THE Y VALUES WERE SET.
C NLAST.NE.0 IS THE NUMBER LEFT TO BE COMPUTED BY ANOTHER
C FORMULA FOR ORDERS FNU TO FNU+NLAST-1 BECAUSE FNU+NLAST-1.LT.FNUL.
C Y(I)=CZERO FOR I=NLAST+1,N
C
C***ROUTINES CALLED ZUCHK,ZUNIK,ZUOIK,D1MACH,ZABS
C***END PROLOGUE ZUNI1
C COMPLEX CFN,CONE,CRSC,CSCL,CSR,CSS,CWRK,CZERO,C1,C2,PHI,RZ,SUM,S1,
C *S2,Y,Z,ZETA1,ZETA2
DOUBLE PRECISION ALIM, APHI, ASCLE, BRY, CONER, CRSC,
* CSCL, CSRR, CSSR, CWRKI, CWRKR, C1R, C2I, C2M, C2R, ELIM, FN,
* FNU, FNUL, PHII, PHIR, RAST, RS1, RZI, RZR, STI, STR, SUMI,
* SUMR, S1I, S1R, S2I, S2R, TOL, YI, YR, ZEROI, ZEROR, ZETA1I,
* ZETA1R, ZETA2I, ZETA2R, ZI, ZR, CYR, CYI, D1MACH, ZABS
INTEGER I, IFLAG, INIT, K, KODE, M, N, ND, NLAST, NN, NUF, NW, NZ
DIMENSION BRY(3), YR(N), YI(N), CWRKR(16), CWRKI(16), CSSR(3),
* CSRR(3), CYR(2), CYI(2)
DATA ZEROR,ZEROI,CONER / 0.0D0, 0.0D0, 1.0D0 /
C
NZ = 0
ND = N
NLAST = 0
C-----------------------------------------------------------------------
C COMPUTED VALUES WITH EXPONENTS BETWEEN ALIM AND ELIM IN MAG-
C NITUDE ARE SCALED TO KEEP INTERMEDIATE ARITHMETIC ON SCALE,
C EXP(ALIM)=EXP(ELIM)*TOL
C-----------------------------------------------------------------------
CSCL = 1.0D0/TOL
CRSC = TOL
CSSR(1) = CSCL
CSSR(2) = CONER
CSSR(3) = CRSC
CSRR(1) = CRSC
CSRR(2) = CONER
CSRR(3) = CSCL
BRY(1) = 1.0D+3*D1MACH(1)/TOL
C-----------------------------------------------------------------------
C CHECK FOR UNDERFLOW AND OVERFLOW ON FIRST MEMBER
C-----------------------------------------------------------------------
FN = DMAX1(FNU,1.0D0)
INIT = 0
CALL ZUNIK(ZR, ZI, FN, 1, 1, TOL, INIT, PHIR, PHII, ZETA1R,
* ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI)
IF (KODE.EQ.1) GO TO 10
STR = ZR + ZETA2R
STI = ZI + ZETA2I
RAST = FN/ZABS(COMPLEX(STR,STI))
STR = STR*RAST*RAST
STI = -STI*RAST*RAST
S1R = -ZETA1R + STR
S1I = -ZETA1I + STI
GO TO 20
10 CONTINUE
S1R = -ZETA1R + ZETA2R
S1I = -ZETA1I + ZETA2I
20 CONTINUE
RS1 = S1R
IF (DABS(RS1).GT.ELIM) GO TO 130
30 CONTINUE
NN = MIN0(2,ND)
DO 80 I=1,NN
FN = FNU + DBLE(FLOAT(ND-I))
INIT = 0
CALL ZUNIK(ZR, ZI, FN, 1, 0, TOL, INIT, PHIR, PHII, ZETA1R,
* ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI)
IF (KODE.EQ.1) GO TO 40
STR = ZR + ZETA2R
STI = ZI + ZETA2I
RAST = FN/ZABS(COMPLEX(STR,STI))
STR = STR*RAST*RAST
STI = -STI*RAST*RAST
S1R = -ZETA1R + STR
S1I = -ZETA1I + STI + ZI
GO TO 50
40 CONTINUE
S1R = -ZETA1R + ZETA2R
S1I = -ZETA1I + ZETA2I
50 CONTINUE
C-----------------------------------------------------------------------
C TEST FOR UNDERFLOW AND OVERFLOW
C-----------------------------------------------------------------------
RS1 = S1R
IF (DABS(RS1).GT.ELIM) GO TO 110
IF (I.EQ.1) IFLAG = 2
IF (DABS(RS1).LT.ALIM) GO TO 60
C-----------------------------------------------------------------------
C REFINE TEST AND SCALE
C-----------------------------------------------------------------------
APHI = ZABS(COMPLEX(PHIR,PHII))
RS1 = RS1 + DLOG(APHI)
IF (DABS(RS1).GT.ELIM) GO TO 110
IF (I.EQ.1) IFLAG = 1
IF (RS1.LT.0.0D0) GO TO 60
IF (I.EQ.1) IFLAG = 3
60 CONTINUE
C-----------------------------------------------------------------------
C SCALE S1 IF CABS(S1).LT.ASCLE
C-----------------------------------------------------------------------
S2R = PHIR*SUMR - PHII*SUMI
S2I = PHIR*SUMI + PHII*SUMR
STR = DEXP(S1R)*CSSR(IFLAG)
S1R = STR*DCOS(S1I)
S1I = STR*DSIN(S1I)
STR = S2R*S1R - S2I*S1I
S2I = S2R*S1I + S2I*S1R
S2R = STR
IF (IFLAG.NE.1) GO TO 70
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
IF (NW.NE.0) GO TO 110
70 CONTINUE
CYR(I) = S2R
CYI(I) = S2I
M = ND - I + 1
YR(M) = S2R*CSRR(IFLAG)
YI(M) = S2I*CSRR(IFLAG)
80 CONTINUE
IF (ND.LE.2) GO TO 100
RAST = 1.0D0/ZABS(COMPLEX(ZR,ZI))
STR = ZR*RAST
STI = -ZI*RAST
RZR = (STR+STR)*RAST
RZI = (STI+STI)*RAST
BRY(2) = 1.0D0/BRY(1)
BRY(3) = D1MACH(2)
S1R = CYR(1)
S1I = CYI(1)
S2R = CYR(2)
S2I = CYI(2)
C1R = CSRR(IFLAG)
ASCLE = BRY(IFLAG)
K = ND - 2
FN = DBLE(FLOAT(K))
DO 90 I=3,ND
C2R = S2R
C2I = S2I
S2R = S1R + (FNU+FN)*(RZR*C2R-RZI*C2I)
S2I = S1I + (FNU+FN)*(RZR*C2I+RZI*C2R)
S1R = C2R
S1I = C2I
C2R = S2R*C1R
C2I = S2I*C1R
YR(K) = C2R
YI(K) = C2I
K = K - 1
FN = FN - 1.0D0
IF (IFLAG.GE.3) GO TO 90
STR = DABS(C2R)
STI = DABS(C2I)
C2M = DMAX1(STR,STI)
IF (C2M.LE.ASCLE) GO TO 90
IFLAG = IFLAG + 1
ASCLE = BRY(IFLAG)
S1R = S1R*C1R
S1I = S1I*C1R
S2R = C2R
S2I = C2I
S1R = S1R*CSSR(IFLAG)
S1I = S1I*CSSR(IFLAG)
S2R = S2R*CSSR(IFLAG)
S2I = S2I*CSSR(IFLAG)
C1R = CSRR(IFLAG)
90 CONTINUE
100 CONTINUE
RETURN
C-----------------------------------------------------------------------
C SET UNDERFLOW AND UPDATE PARAMETERS
C-----------------------------------------------------------------------
110 CONTINUE
IF (RS1.GT.0.0D0) GO TO 120
YR(ND) = ZEROR
YI(ND) = ZEROI
NZ = NZ + 1
ND = ND - 1
IF (ND.EQ.0) GO TO 100
CALL ZUOIK(ZR, ZI, FNU, KODE, 1, ND, YR, YI, NUF, TOL, ELIM, ALIM)
IF (NUF.LT.0) GO TO 120
ND = ND - NUF
NZ = NZ + NUF
IF (ND.EQ.0) GO TO 100
FN = FNU + DBLE(FLOAT(ND-1))
IF (FN.GE.FNUL) GO TO 30
NLAST = ND
RETURN
120 CONTINUE
NZ = -1
RETURN
130 CONTINUE
IF (RS1.GT.0.0D0) GO TO 120
NZ = N
DO 140 I=1,N
YR(I) = ZEROR
YI(I) = ZEROI
140 CONTINUE
RETURN
END

View file

@ -1,267 +0,0 @@
SUBROUTINE ZUNI2(ZR, ZI, FNU, KODE, N, YR, YI, NZ, NLAST, FNUL,
* TOL, ELIM, ALIM)
C***BEGIN PROLOGUE ZUNI2
C***REFER TO ZBESI,ZBESK
C
C ZUNI2 COMPUTES I(FNU,Z) IN THE RIGHT HALF PLANE BY MEANS OF
C UNIFORM ASYMPTOTIC EXPANSION FOR J(FNU,ZN) WHERE ZN IS Z*I
C OR -Z*I AND ZN IS IN THE RIGHT HALF PLANE ALSO.
C
C FNUL IS THE SMALLEST ORDER PERMITTED FOR THE ASYMPTOTIC
C EXPANSION. NLAST=0 MEANS ALL OF THE Y VALUES WERE SET.
C NLAST.NE.0 IS THE NUMBER LEFT TO BE COMPUTED BY ANOTHER
C FORMULA FOR ORDERS FNU TO FNU+NLAST-1 BECAUSE FNU+NLAST-1.LT.FNUL.
C Y(I)=CZERO FOR I=NLAST+1,N
C
C***ROUTINES CALLED ZAIRY,ZUCHK,ZUNHJ,ZUOIK,D1MACH,ZABS
C***END PROLOGUE ZUNI2
C COMPLEX AI,ARG,ASUM,BSUM,CFN,CI,CID,CIP,CONE,CRSC,CSCL,CSR,CSS,
C *CZERO,C1,C2,DAI,PHI,RZ,S1,S2,Y,Z,ZB,ZETA1,ZETA2,ZN
DOUBLE PRECISION AARG, AIC, AII, AIR, ALIM, ANG, APHI, ARGI,
* ARGR, ASCLE, ASUMI, ASUMR, BRY, BSUMI, BSUMR, CIDI, CIPI, CIPR,
* CONER, CRSC, CSCL, CSRR, CSSR, C1R, C2I, C2M, C2R, DAII,
* DAIR, ELIM, FN, FNU, FNUL, HPI, PHII, PHIR, RAST, RAZ, RS1, RZI,
* RZR, STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, ZBI, ZBR, ZEROI,
* ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZI, ZNI, ZNR, ZR, CYR,
* CYI, D1MACH, ZABS, CAR, SAR
INTEGER I, IFLAG, IN, INU, J, K, KODE, N, NAI, ND, NDAI, NLAST,
* NN, NUF, NW, NZ, IDUM
DIMENSION BRY(3), YR(N), YI(N), CIPR(4), CIPI(4), CSSR(3),
* CSRR(3), CYR(2), CYI(2)
DATA ZEROR,ZEROI,CONER / 0.0D0, 0.0D0, 1.0D0 /
DATA CIPR(1),CIPI(1),CIPR(2),CIPI(2),CIPR(3),CIPI(3),CIPR(4),
* CIPI(4)/ 1.0D0,0.0D0, 0.0D0,1.0D0, -1.0D0,0.0D0, 0.0D0,-1.0D0/
DATA HPI, AIC /
1 1.57079632679489662D+00, 1.265512123484645396D+00/
C
NZ = 0
ND = N
NLAST = 0
C-----------------------------------------------------------------------
C COMPUTED VALUES WITH EXPONENTS BETWEEN ALIM AND ELIM IN MAG-
C NITUDE ARE SCALED TO KEEP INTERMEDIATE ARITHMETIC ON SCALE,
C EXP(ALIM)=EXP(ELIM)*TOL
C-----------------------------------------------------------------------
CSCL = 1.0D0/TOL
CRSC = TOL
CSSR(1) = CSCL
CSSR(2) = CONER
CSSR(3) = CRSC
CSRR(1) = CRSC
CSRR(2) = CONER
CSRR(3) = CSCL
BRY(1) = 1.0D+3*D1MACH(1)/TOL
C-----------------------------------------------------------------------
C ZN IS IN THE RIGHT HALF PLANE AFTER ROTATION BY CI OR -CI
C-----------------------------------------------------------------------
ZNR = ZI
ZNI = -ZR
ZBR = ZR
ZBI = ZI
CIDI = -CONER
INU = INT(SNGL(FNU))
ANG = HPI*(FNU-DBLE(FLOAT(INU)))
C2R = DCOS(ANG)
C2I = DSIN(ANG)
CAR = C2R
SAR = C2I
IN = INU + N - 1
IN = MOD(IN,4) + 1
STR = C2R*CIPR(IN) - C2I*CIPI(IN)
C2I = C2R*CIPI(IN) + C2I*CIPR(IN)
C2R = STR
IF (ZI.GT.0.0D0) GO TO 10
ZNR = -ZNR
ZBI = -ZBI
CIDI = -CIDI
C2I = -C2I
10 CONTINUE
C-----------------------------------------------------------------------
C CHECK FOR UNDERFLOW AND OVERFLOW ON FIRST MEMBER
C-----------------------------------------------------------------------
FN = DMAX1(FNU,1.0D0)
CALL ZUNHJ(ZNR, ZNI, FN, 1, TOL, PHIR, PHII, ARGR, ARGI, ZETA1R,
* ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI)
IF (KODE.EQ.1) GO TO 20
STR = ZBR + ZETA2R
STI = ZBI + ZETA2I
RAST = FN/ZABS(COMPLEX(STR,STI))
STR = STR*RAST*RAST
STI = -STI*RAST*RAST
S1R = -ZETA1R + STR
S1I = -ZETA1I + STI
GO TO 30
20 CONTINUE
S1R = -ZETA1R + ZETA2R
S1I = -ZETA1I + ZETA2I
30 CONTINUE
RS1 = S1R
IF (DABS(RS1).GT.ELIM) GO TO 150
40 CONTINUE
NN = MIN0(2,ND)
DO 90 I=1,NN
FN = FNU + DBLE(FLOAT(ND-I))
CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIR, PHII, ARGR, ARGI,
* ZETA1R, ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI)
IF (KODE.EQ.1) GO TO 50
STR = ZBR + ZETA2R
STI = ZBI + ZETA2I
RAST = FN/ZABS(COMPLEX(STR,STI))
STR = STR*RAST*RAST
STI = -STI*RAST*RAST
S1R = -ZETA1R + STR
S1I = -ZETA1I + STI + DABS(ZI)
GO TO 60
50 CONTINUE
S1R = -ZETA1R + ZETA2R
S1I = -ZETA1I + ZETA2I
60 CONTINUE
C-----------------------------------------------------------------------
C TEST FOR UNDERFLOW AND OVERFLOW
C-----------------------------------------------------------------------
RS1 = S1R
IF (DABS(RS1).GT.ELIM) GO TO 120
IF (I.EQ.1) IFLAG = 2
IF (DABS(RS1).LT.ALIM) GO TO 70
C-----------------------------------------------------------------------
C REFINE TEST AND SCALE
C-----------------------------------------------------------------------
C-----------------------------------------------------------------------
APHI = ZABS(COMPLEX(PHIR,PHII))
AARG = ZABS(COMPLEX(ARGR,ARGI))
RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC
IF (DABS(RS1).GT.ELIM) GO TO 120
IF (I.EQ.1) IFLAG = 1
IF (RS1.LT.0.0D0) GO TO 70
IF (I.EQ.1) IFLAG = 3
70 CONTINUE
C-----------------------------------------------------------------------
C SCALE S1 TO KEEP INTERMEDIATE ARITHMETIC ON SCALE NEAR
C EXPONENT EXTREMES
C-----------------------------------------------------------------------
CALL ZAIRY(ARGR, ARGI, 0, 2, AIR, AII, NAI, IDUM)
CALL ZAIRY(ARGR, ARGI, 1, 2, DAIR, DAII, NDAI, IDUM)
STR = DAIR*BSUMR - DAII*BSUMI
STI = DAIR*BSUMI + DAII*BSUMR
STR = STR + (AIR*ASUMR-AII*ASUMI)
STI = STI + (AIR*ASUMI+AII*ASUMR)
S2R = PHIR*STR - PHII*STI
S2I = PHIR*STI + PHII*STR
STR = DEXP(S1R)*CSSR(IFLAG)
S1R = STR*DCOS(S1I)
S1I = STR*DSIN(S1I)
STR = S2R*S1R - S2I*S1I
S2I = S2R*S1I + S2I*S1R
S2R = STR
IF (IFLAG.NE.1) GO TO 80
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
IF (NW.NE.0) GO TO 120
80 CONTINUE
IF (ZI.LE.0.0D0) S2I = -S2I
STR = S2R*C2R - S2I*C2I
S2I = S2R*C2I + S2I*C2R
S2R = STR
CYR(I) = S2R
CYI(I) = S2I
J = ND - I + 1
YR(J) = S2R*CSRR(IFLAG)
YI(J) = S2I*CSRR(IFLAG)
STR = -C2I*CIDI
C2I = C2R*CIDI
C2R = STR
90 CONTINUE
IF (ND.LE.2) GO TO 110
RAZ = 1.0D0/ZABS(COMPLEX(ZR,ZI))
STR = ZR*RAZ
STI = -ZI*RAZ
RZR = (STR+STR)*RAZ
RZI = (STI+STI)*RAZ
BRY(2) = 1.0D0/BRY(1)
BRY(3) = D1MACH(2)
S1R = CYR(1)
S1I = CYI(1)
S2R = CYR(2)
S2I = CYI(2)
C1R = CSRR(IFLAG)
ASCLE = BRY(IFLAG)
K = ND - 2
FN = DBLE(FLOAT(K))
DO 100 I=3,ND
C2R = S2R
C2I = S2I
S2R = S1R + (FNU+FN)*(RZR*C2R-RZI*C2I)
S2I = S1I + (FNU+FN)*(RZR*C2I+RZI*C2R)
S1R = C2R
S1I = C2I
C2R = S2R*C1R
C2I = S2I*C1R
YR(K) = C2R
YI(K) = C2I
K = K - 1
FN = FN - 1.0D0
IF (IFLAG.GE.3) GO TO 100
STR = DABS(C2R)
STI = DABS(C2I)
C2M = DMAX1(STR,STI)
IF (C2M.LE.ASCLE) GO TO 100
IFLAG = IFLAG + 1
ASCLE = BRY(IFLAG)
S1R = S1R*C1R
S1I = S1I*C1R
S2R = C2R
S2I = C2I
S1R = S1R*CSSR(IFLAG)
S1I = S1I*CSSR(IFLAG)
S2R = S2R*CSSR(IFLAG)
S2I = S2I*CSSR(IFLAG)
C1R = CSRR(IFLAG)
100 CONTINUE
110 CONTINUE
RETURN
120 CONTINUE
IF (RS1.GT.0.0D0) GO TO 140
C-----------------------------------------------------------------------
C SET UNDERFLOW AND UPDATE PARAMETERS
C-----------------------------------------------------------------------
YR(ND) = ZEROR
YI(ND) = ZEROI
NZ = NZ + 1
ND = ND - 1
IF (ND.EQ.0) GO TO 110
CALL ZUOIK(ZR, ZI, FNU, KODE, 1, ND, YR, YI, NUF, TOL, ELIM, ALIM)
IF (NUF.LT.0) GO TO 140
ND = ND - NUF
NZ = NZ + NUF
IF (ND.EQ.0) GO TO 110
FN = FNU + DBLE(FLOAT(ND-1))
IF (FN.LT.FNUL) GO TO 130
C FN = CIDI
C J = NUF + 1
C K = MOD(J,4) + 1
C S1R = CIPR(K)
C S1I = CIPI(K)
C IF (FN.LT.0.0D0) S1I = -S1I
C STR = C2R*S1R - C2I*S1I
C C2I = C2R*S1I + C2I*S1R
C C2R = STR
IN = INU + ND - 1
IN = MOD(IN,4) + 1
C2R = CAR*CIPR(IN) - SAR*CIPI(IN)
C2I = CAR*CIPI(IN) + SAR*CIPR(IN)
IF (ZI.LE.0.0D0) C2I = -C2I
GO TO 40
130 CONTINUE
NLAST = ND
RETURN
140 CONTINUE
NZ = -1
RETURN
150 CONTINUE
IF (RS1.GT.0.0D0) GO TO 140
NZ = N
DO 160 I=1,N
YR(I) = ZEROR
YI(I) = ZEROI
160 CONTINUE
RETURN
END

View file

@ -1,211 +0,0 @@
SUBROUTINE ZUNIK(ZRR, ZRI, FNU, IKFLG, IPMTR, TOL, INIT, PHIR,
* PHII, ZETA1R, ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI)
C***BEGIN PROLOGUE ZUNIK
C***REFER TO ZBESI,ZBESK
C
C ZUNIK COMPUTES PARAMETERS FOR THE UNIFORM ASYMPTOTIC
C EXPANSIONS OF THE I AND K FUNCTIONS ON IKFLG= 1 OR 2
C RESPECTIVELY BY
C
C W(FNU,ZR) = PHI*EXP(ZETA)*SUM
C
C WHERE ZETA=-ZETA1 + ZETA2 OR
C ZETA1 - ZETA2
C
C THE FIRST CALL MUST HAVE INIT=0. SUBSEQUENT CALLS WITH THE
C SAME ZR AND FNU WILL RETURN THE I OR K FUNCTION ON IKFLG=
C 1 OR 2 WITH NO CHANGE IN INIT. CWRK IS A COMPLEX WORK
C ARRAY. IPMTR=0 COMPUTES ALL PARAMETERS. IPMTR=1 COMPUTES PHI,
C ZETA1,ZETA2.
C
C***ROUTINES CALLED ZDIV,ZLOG,ZSQRT,D1MACH
C***END PROLOGUE ZUNIK
C COMPLEX CFN,CON,CONE,CRFN,CWRK,CZERO,PHI,S,SR,SUM,T,T2,ZETA1,
C *ZETA2,ZN,ZR
DOUBLE PRECISION AC, C, CON, CONEI, CONER, CRFNI, CRFNR, CWRKI,
* CWRKR, FNU, PHII, PHIR, RFN, SI, SR, SRI, SRR, STI, STR, SUMI,
* SUMR, TEST, TI, TOL, TR, T2I, T2R, ZEROI, ZEROR, ZETA1I, ZETA1R,
* ZETA2I, ZETA2R, ZNI, ZNR, ZRI, ZRR, D1MACH
INTEGER I, IDUM, IKFLG, INIT, IPMTR, J, K, L
DIMENSION C(120), CWRKR(16), CWRKI(16), CON(2)
DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 /
DATA CON(1), CON(2) /
1 3.98942280401432678D-01, 1.25331413731550025D+00 /
DATA C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), C(10),
1 C(11), C(12), C(13), C(14), C(15), C(16), C(17), C(18),
2 C(19), C(20), C(21), C(22), C(23), C(24)/
3 1.00000000000000000D+00, -2.08333333333333333D-01,
4 1.25000000000000000D-01, 3.34201388888888889D-01,
5 -4.01041666666666667D-01, 7.03125000000000000D-02,
6 -1.02581259645061728D+00, 1.84646267361111111D+00,
7 -8.91210937500000000D-01, 7.32421875000000000D-02,
8 4.66958442342624743D+00, -1.12070026162229938D+01,
9 8.78912353515625000D+00, -2.36408691406250000D+00,
A 1.12152099609375000D-01, -2.82120725582002449D+01,
B 8.46362176746007346D+01, -9.18182415432400174D+01,
C 4.25349987453884549D+01, -7.36879435947963170D+00,
D 2.27108001708984375D-01, 2.12570130039217123D+02,
E -7.65252468141181642D+02, 1.05999045252799988D+03/
DATA C(25), C(26), C(27), C(28), C(29), C(30), C(31), C(32),
1 C(33), C(34), C(35), C(36), C(37), C(38), C(39), C(40),
2 C(41), C(42), C(43), C(44), C(45), C(46), C(47), C(48)/
3 -6.99579627376132541D+02, 2.18190511744211590D+02,
4 -2.64914304869515555D+01, 5.72501420974731445D-01,
5 -1.91945766231840700D+03, 8.06172218173730938D+03,
6 -1.35865500064341374D+04, 1.16553933368645332D+04,
7 -5.30564697861340311D+03, 1.20090291321635246D+03,
8 -1.08090919788394656D+02, 1.72772750258445740D+00,
9 2.02042913309661486D+04, -9.69805983886375135D+04,
A 1.92547001232531532D+05, -2.03400177280415534D+05,
B 1.22200464983017460D+05, -4.11926549688975513D+04,
C 7.10951430248936372D+03, -4.93915304773088012D+02,
D 6.07404200127348304D+00, -2.42919187900551333D+05,
E 1.31176361466297720D+06, -2.99801591853810675D+06/
DATA C(49), C(50), C(51), C(52), C(53), C(54), C(55), C(56),
1 C(57), C(58), C(59), C(60), C(61), C(62), C(63), C(64),
2 C(65), C(66), C(67), C(68), C(69), C(70), C(71), C(72)/
3 3.76327129765640400D+06, -2.81356322658653411D+06,
4 1.26836527332162478D+06, -3.31645172484563578D+05,
5 4.52187689813627263D+04, -2.49983048181120962D+03,
6 2.43805296995560639D+01, 3.28446985307203782D+06,
7 -1.97068191184322269D+07, 5.09526024926646422D+07,
8 -7.41051482115326577D+07, 6.63445122747290267D+07,
9 -3.75671766607633513D+07, 1.32887671664218183D+07,
A -2.78561812808645469D+06, 3.08186404612662398D+05,
B -1.38860897537170405D+04, 1.10017140269246738D+02,
C -4.93292536645099620D+07, 3.25573074185765749D+08,
D -9.39462359681578403D+08, 1.55359689957058006D+09,
E -1.62108055210833708D+09, 1.10684281682301447D+09/
DATA C(73), C(74), C(75), C(76), C(77), C(78), C(79), C(80),
1 C(81), C(82), C(83), C(84), C(85), C(86), C(87), C(88),
2 C(89), C(90), C(91), C(92), C(93), C(94), C(95), C(96)/
3 -4.95889784275030309D+08, 1.42062907797533095D+08,
4 -2.44740627257387285D+07, 2.24376817792244943D+06,
5 -8.40054336030240853D+04, 5.51335896122020586D+02,
6 8.14789096118312115D+08, -5.86648149205184723D+09,
7 1.86882075092958249D+10, -3.46320433881587779D+10,
8 4.12801855797539740D+10, -3.30265997498007231D+10,
9 1.79542137311556001D+10, -6.56329379261928433D+09,
A 1.55927986487925751D+09, -2.25105661889415278D+08,
B 1.73951075539781645D+07, -5.49842327572288687D+05,
C 3.03809051092238427D+03, -1.46792612476956167D+10,
D 1.14498237732025810D+11, -3.99096175224466498D+11,
E 8.19218669548577329D+11, -1.09837515608122331D+12/
DATA C(97), C(98), C(99), C(100), C(101), C(102), C(103), C(104),
1 C(105), C(106), C(107), C(108), C(109), C(110), C(111),
2 C(112), C(113), C(114), C(115), C(116), C(117), C(118)/
3 1.00815810686538209D+12, -6.45364869245376503D+11,
4 2.87900649906150589D+11, -8.78670721780232657D+10,
5 1.76347306068349694D+10, -2.16716498322379509D+09,
6 1.43157876718888981D+08, -3.87183344257261262D+06,
7 1.82577554742931747D+04, 2.86464035717679043D+11,
8 -2.40629790002850396D+12, 9.10934118523989896D+12,
9 -2.05168994109344374D+13, 3.05651255199353206D+13,
A -3.16670885847851584D+13, 2.33483640445818409D+13,
B -1.23204913055982872D+13, 4.61272578084913197D+12,
C -1.19655288019618160D+12, 2.05914503232410016D+11,
D -2.18229277575292237D+10, 1.24700929351271032D+09/
DATA C(119), C(120)/
1 -2.91883881222208134D+07, 1.18838426256783253D+05/
C
IF (INIT.NE.0) GO TO 40
C-----------------------------------------------------------------------
C INITIALIZE ALL VARIABLES
C-----------------------------------------------------------------------
RFN = 1.0D0/FNU
C-----------------------------------------------------------------------
C OVERFLOW TEST (ZR/FNU TOO SMALL)
C-----------------------------------------------------------------------
TEST = D1MACH(1)*1.0D+3
AC = FNU*TEST
IF (DABS(ZRR).GT.AC .OR. DABS(ZRI).GT.AC) GO TO 15
ZETA1R = 2.0D0*DABS(DLOG(TEST))+FNU
ZETA1I = 0.0D0
ZETA2R = FNU
ZETA2I = 0.0D0
PHIR = 1.0D0
PHII = 0.0D0
RETURN
15 CONTINUE
TR = ZRR*RFN
TI = ZRI*RFN
SR = CONER + (TR*TR-TI*TI)
SI = CONEI + (TR*TI+TI*TR)
CALL ZSQRT(SR, SI, SRR, SRI)
STR = CONER + SRR
STI = CONEI + SRI
CALL ZDIV(STR, STI, TR, TI, ZNR, ZNI)
CALL ZLOG(ZNR, ZNI, STR, STI, IDUM)
ZETA1R = FNU*STR
ZETA1I = FNU*STI
ZETA2R = FNU*SRR
ZETA2I = FNU*SRI
CALL ZDIV(CONER, CONEI, SRR, SRI, TR, TI)
SRR = TR*RFN
SRI = TI*RFN
CALL ZSQRT(SRR, SRI, CWRKR(16), CWRKI(16))
PHIR = CWRKR(16)*CON(IKFLG)
PHII = CWRKI(16)*CON(IKFLG)
IF (IPMTR.NE.0) RETURN
CALL ZDIV(CONER, CONEI, SR, SI, T2R, T2I)
CWRKR(1) = CONER
CWRKI(1) = CONEI
CRFNR = CONER
CRFNI = CONEI
AC = 1.0D0
L = 1
DO 20 K=2,15
SR = ZEROR
SI = ZEROI
DO 10 J=1,K
L = L + 1
STR = SR*T2R - SI*T2I + C(L)
SI = SR*T2I + SI*T2R
SR = STR
10 CONTINUE
STR = CRFNR*SRR - CRFNI*SRI
CRFNI = CRFNR*SRI + CRFNI*SRR
CRFNR = STR
CWRKR(K) = CRFNR*SR - CRFNI*SI
CWRKI(K) = CRFNR*SI + CRFNI*SR
AC = AC*RFN
TEST = DABS(CWRKR(K)) + DABS(CWRKI(K))
IF (AC.LT.TOL .AND. TEST.LT.TOL) GO TO 30
20 CONTINUE
K = 15
30 CONTINUE
INIT = K
40 CONTINUE
IF (IKFLG.EQ.2) GO TO 60
C-----------------------------------------------------------------------
C COMPUTE SUM FOR THE I FUNCTION
C-----------------------------------------------------------------------
SR = ZEROR
SI = ZEROI
DO 50 I=1,INIT
SR = SR + CWRKR(I)
SI = SI + CWRKI(I)
50 CONTINUE
SUMR = SR
SUMI = SI
PHIR = CWRKR(16)*CON(1)
PHII = CWRKI(16)*CON(1)
RETURN
60 CONTINUE
C-----------------------------------------------------------------------
C COMPUTE SUM FOR THE K FUNCTION
C-----------------------------------------------------------------------
SR = ZEROR
SI = ZEROI
TR = CONER
DO 70 I=1,INIT
SR = SR + TR*CWRKR(I)
SI = SI + TR*CWRKI(I)
TR = -TR
70 CONTINUE
SUMR = SR
SUMI = SI
PHIR = CWRKR(16)*CON(2)
PHII = CWRKI(16)*CON(2)
RETURN
END

View file

@ -1,426 +0,0 @@
SUBROUTINE ZUNK1(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM,
* ALIM)
C***BEGIN PROLOGUE ZUNK1
C***REFER TO ZBESK
C
C ZUNK1 COMPUTES K(FNU,Z) AND ITS ANALYTIC CONTINUATION FROM THE
C RIGHT HALF PLANE TO THE LEFT HALF PLANE BY MEANS OF THE
C UNIFORM ASYMPTOTIC EXPANSION.
C MR INDICATES THE DIRECTION OF ROTATION FOR ANALYTIC CONTINUATION.
C NZ=-1 MEANS AN OVERFLOW WILL OCCUR
C
C***ROUTINES CALLED ZKSCL,ZS1S2,ZUCHK,ZUNIK,D1MACH,ZABS
C***END PROLOGUE ZUNK1
C COMPLEX CFN,CK,CONE,CRSC,CS,CSCL,CSGN,CSPN,CSR,CSS,CWRK,CY,CZERO,
C *C1,C2,PHI,PHID,RZ,SUM,SUMD,S1,S2,Y,Z,ZETA1,ZETA1D,ZETA2,ZETA2D,ZR
DOUBLE PRECISION ALIM, ANG, APHI, ASC, ASCLE, BRY, CKI, CKR,
* CONER, CRSC, CSCL, CSGNI, CSPNI, CSPNR, CSR, CSRR, CSSR,
* CWRKI, CWRKR, CYI, CYR, C1I, C1R, C2I, C2M, C2R, ELIM, FMR, FN,
* FNF, FNU, PHIDI, PHIDR, PHII, PHIR, PI, RAST, RAZR, RS1, RZI,
* RZR, SGN, STI, STR, SUMDI, SUMDR, SUMI, SUMR, S1I, S1R, S2I,
* S2R, TOL, YI, YR, ZEROI, ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R,
* ZET1DI, ZET1DR, ZET2DI, ZET2DR, ZI, ZR, ZRI, ZRR, D1MACH, ZABS
INTEGER I, IB, IFLAG, IFN, IL, INIT, INU, IUF, K, KDFLG, KFLAG,
* KK, KODE, MR, N, NW, NZ, INITD, IC, IPARD, J
DIMENSION BRY(3), INIT(2), YR(N), YI(N), SUMR(2), SUMI(2),
* ZETA1R(2), ZETA1I(2), ZETA2R(2), ZETA2I(2), CYR(2), CYI(2),
* CWRKR(16,3), CWRKI(16,3), CSSR(3), CSRR(3), PHIR(2), PHII(2)
DATA ZEROR,ZEROI,CONER / 0.0D0, 0.0D0, 1.0D0 /
DATA PI / 3.14159265358979324D0 /
C
KDFLG = 1
NZ = 0
C-----------------------------------------------------------------------
C EXP(-ALIM)=EXP(-ELIM)/TOL=APPROX. ONE PRECISION GREATER THAN
C THE UNDERFLOW LIMIT
C-----------------------------------------------------------------------
CSCL = 1.0D0/TOL
CRSC = TOL
CSSR(1) = CSCL
CSSR(2) = CONER
CSSR(3) = CRSC
CSRR(1) = CRSC
CSRR(2) = CONER
CSRR(3) = CSCL
BRY(1) = 1.0D+3*D1MACH(1)/TOL
BRY(2) = 1.0D0/BRY(1)
BRY(3) = D1MACH(2)
ZRR = ZR
ZRI = ZI
IF (ZR.GE.0.0D0) GO TO 10
ZRR = -ZR
ZRI = -ZI
10 CONTINUE
J = 2
DO 70 I=1,N
C-----------------------------------------------------------------------
C J FLIP FLOPS BETWEEN 1 AND 2 IN J = 3 - J
C-----------------------------------------------------------------------
J = 3 - J
FN = FNU + DBLE(FLOAT(I-1))
INIT(J) = 0
CALL ZUNIK(ZRR, ZRI, FN, 2, 0, TOL, INIT(J), PHIR(J), PHII(J),
* ZETA1R(J), ZETA1I(J), ZETA2R(J), ZETA2I(J), SUMR(J), SUMI(J),
* CWRKR(1,J), CWRKI(1,J))
IF (KODE.EQ.1) GO TO 20
STR = ZRR + ZETA2R(J)
STI = ZRI + ZETA2I(J)
RAST = FN/ZABS(COMPLEX(STR,STI))
STR = STR*RAST*RAST
STI = -STI*RAST*RAST
S1R = ZETA1R(J) - STR
S1I = ZETA1I(J) - STI
GO TO 30
20 CONTINUE
S1R = ZETA1R(J) - ZETA2R(J)
S1I = ZETA1I(J) - ZETA2I(J)
30 CONTINUE
RS1 = S1R
C-----------------------------------------------------------------------
C TEST FOR UNDERFLOW AND OVERFLOW
C-----------------------------------------------------------------------
IF (DABS(RS1).GT.ELIM) GO TO 60
IF (KDFLG.EQ.1) KFLAG = 2
IF (DABS(RS1).LT.ALIM) GO TO 40
C-----------------------------------------------------------------------
C REFINE TEST AND SCALE
C-----------------------------------------------------------------------
APHI = ZABS(COMPLEX(PHIR(J),PHII(J)))
RS1 = RS1 + DLOG(APHI)
IF (DABS(RS1).GT.ELIM) GO TO 60
IF (KDFLG.EQ.1) KFLAG = 1
IF (RS1.LT.0.0D0) GO TO 40
IF (KDFLG.EQ.1) KFLAG = 3
40 CONTINUE
C-----------------------------------------------------------------------
C SCALE S1 TO KEEP INTERMEDIATE ARITHMETIC ON SCALE NEAR
C EXPONENT EXTREMES
C-----------------------------------------------------------------------
S2R = PHIR(J)*SUMR(J) - PHII(J)*SUMI(J)
S2I = PHIR(J)*SUMI(J) + PHII(J)*SUMR(J)
STR = DEXP(S1R)*CSSR(KFLAG)
S1R = STR*DCOS(S1I)
S1I = STR*DSIN(S1I)
STR = S2R*S1R - S2I*S1I
S2I = S1R*S2I + S2R*S1I
S2R = STR
IF (KFLAG.NE.1) GO TO 50
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
IF (NW.NE.0) GO TO 60
50 CONTINUE
CYR(KDFLG) = S2R
CYI(KDFLG) = S2I
YR(I) = S2R*CSRR(KFLAG)
YI(I) = S2I*CSRR(KFLAG)
IF (KDFLG.EQ.2) GO TO 75
KDFLG = 2
GO TO 70
60 CONTINUE
IF (RS1.GT.0.0D0) GO TO 300
C-----------------------------------------------------------------------
C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW
C-----------------------------------------------------------------------
IF (ZR.LT.0.0D0) GO TO 300
KDFLG = 1
YR(I)=ZEROR
YI(I)=ZEROI
NZ=NZ+1
IF (I.EQ.1) GO TO 70
IF ((YR(I-1).EQ.ZEROR).AND.(YI(I-1).EQ.ZEROI)) GO TO 70
YR(I-1)=ZEROR
YI(I-1)=ZEROI
NZ=NZ+1
70 CONTINUE
I = N
75 CONTINUE
RAZR = 1.0D0/ZABS(COMPLEX(ZRR,ZRI))
STR = ZRR*RAZR
STI = -ZRI*RAZR
RZR = (STR+STR)*RAZR
RZI = (STI+STI)*RAZR
CKR = FN*RZR
CKI = FN*RZI
IB = I + 1
IF (N.LT.IB) GO TO 160
C-----------------------------------------------------------------------
C TEST LAST MEMBER FOR UNDERFLOW AND OVERFLOW. SET SEQUENCE TO ZERO
C ON UNDERFLOW.
C-----------------------------------------------------------------------
FN = FNU + DBLE(FLOAT(N-1))
IPARD = 1
IF (MR.NE.0) IPARD = 0
INITD = 0
CALL ZUNIK(ZRR, ZRI, FN, 2, IPARD, TOL, INITD, PHIDR, PHIDI,
* ZET1DR, ZET1DI, ZET2DR, ZET2DI, SUMDR, SUMDI, CWRKR(1,3),
* CWRKI(1,3))
IF (KODE.EQ.1) GO TO 80
STR = ZRR + ZET2DR
STI = ZRI + ZET2DI
RAST = FN/ZABS(COMPLEX(STR,STI))
STR = STR*RAST*RAST
STI = -STI*RAST*RAST
S1R = ZET1DR - STR
S1I = ZET1DI - STI
GO TO 90
80 CONTINUE
S1R = ZET1DR - ZET2DR
S1I = ZET1DI - ZET2DI
90 CONTINUE
RS1 = S1R
IF (DABS(RS1).GT.ELIM) GO TO 95
IF (DABS(RS1).LT.ALIM) GO TO 100
C----------------------------------------------------------------------------
C REFINE ESTIMATE AND TEST
C-------------------------------------------------------------------------
APHI = ZABS(COMPLEX(PHIDR,PHIDI))
RS1 = RS1+DLOG(APHI)
IF (DABS(RS1).LT.ELIM) GO TO 100
95 CONTINUE
IF (DABS(RS1).GT.0.0D0) GO TO 300
C-----------------------------------------------------------------------
C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW
C-----------------------------------------------------------------------
IF (ZR.LT.0.0D0) GO TO 300
NZ = N
DO 96 I=1,N
YR(I) = ZEROR
YI(I) = ZEROI
96 CONTINUE
RETURN
C---------------------------------------------------------------------------
C FORWARD RECUR FOR REMAINDER OF THE SEQUENCE
C----------------------------------------------------------------------------
100 CONTINUE
S1R = CYR(1)
S1I = CYI(1)
S2R = CYR(2)
S2I = CYI(2)
C1R = CSRR(KFLAG)
ASCLE = BRY(KFLAG)
DO 120 I=IB,N
C2R = S2R
C2I = S2I
S2R = CKR*C2R - CKI*C2I + S1R
S2I = CKR*C2I + CKI*C2R + S1I
S1R = C2R
S1I = C2I
CKR = CKR + RZR
CKI = CKI + RZI
C2R = S2R*C1R
C2I = S2I*C1R
YR(I) = C2R
YI(I) = C2I
IF (KFLAG.GE.3) GO TO 120
STR = DABS(C2R)
STI = DABS(C2I)
C2M = DMAX1(STR,STI)
IF (C2M.LE.ASCLE) GO TO 120
KFLAG = KFLAG + 1
ASCLE = BRY(KFLAG)
S1R = S1R*C1R
S1I = S1I*C1R
S2R = C2R
S2I = C2I
S1R = S1R*CSSR(KFLAG)
S1I = S1I*CSSR(KFLAG)
S2R = S2R*CSSR(KFLAG)
S2I = S2I*CSSR(KFLAG)
C1R = CSRR(KFLAG)
120 CONTINUE
160 CONTINUE
IF (MR.EQ.0) RETURN
C-----------------------------------------------------------------------
C ANALYTIC CONTINUATION FOR RE(Z).LT.0.0D0
C-----------------------------------------------------------------------
NZ = 0
FMR = DBLE(FLOAT(MR))
SGN = -DSIGN(PI,FMR)
C-----------------------------------------------------------------------
C CSPN AND CSGN ARE COEFF OF K AND I FUNCTIONS RESP.
C-----------------------------------------------------------------------
CSGNI = SGN
INU = INT(SNGL(FNU))
FNF = FNU - DBLE(FLOAT(INU))
IFN = INU + N - 1
ANG = FNF*SGN
CSPNR = DCOS(ANG)
CSPNI = DSIN(ANG)
IF (MOD(IFN,2).EQ.0) GO TO 170
CSPNR = -CSPNR
CSPNI = -CSPNI
170 CONTINUE
ASC = BRY(1)
IUF = 0
KK = N
KDFLG = 1
IB = IB - 1
IC = IB - 1
DO 270 K=1,N
FN = FNU + DBLE(FLOAT(KK-1))
C-----------------------------------------------------------------------
C LOGIC TO SORT OUT CASES WHOSE PARAMETERS WERE SET FOR THE K
C FUNCTION ABOVE
C-----------------------------------------------------------------------
M=3
IF (N.GT.2) GO TO 175
172 CONTINUE
INITD = INIT(J)
PHIDR = PHIR(J)
PHIDI = PHII(J)
ZET1DR = ZETA1R(J)
ZET1DI = ZETA1I(J)
ZET2DR = ZETA2R(J)
ZET2DI = ZETA2I(J)
SUMDR = SUMR(J)
SUMDI = SUMI(J)
M = J
J = 3 - J
GO TO 180
175 CONTINUE
IF ((KK.EQ.N).AND.(IB.LT.N)) GO TO 180
IF ((KK.EQ.IB).OR.(KK.EQ.IC)) GO TO 172
INITD = 0
180 CONTINUE
CALL ZUNIK(ZRR, ZRI, FN, 1, 0, TOL, INITD, PHIDR, PHIDI,
* ZET1DR, ZET1DI, ZET2DR, ZET2DI, SUMDR, SUMDI,
* CWRKR(1,M), CWRKI(1,M))
IF (KODE.EQ.1) GO TO 200
STR = ZRR + ZET2DR
STI = ZRI + ZET2DI
RAST = FN/ZABS(COMPLEX(STR,STI))
STR = STR*RAST*RAST
STI = -STI*RAST*RAST
S1R = -ZET1DR + STR
S1I = -ZET1DI + STI
GO TO 210
200 CONTINUE
S1R = -ZET1DR + ZET2DR
S1I = -ZET1DI + ZET2DI
210 CONTINUE
C-----------------------------------------------------------------------
C TEST FOR UNDERFLOW AND OVERFLOW
C-----------------------------------------------------------------------
RS1 = S1R
IF (DABS(RS1).GT.ELIM) GO TO 260
IF (KDFLG.EQ.1) IFLAG = 2
IF (DABS(RS1).LT.ALIM) GO TO 220
C-----------------------------------------------------------------------
C REFINE TEST AND SCALE
C-----------------------------------------------------------------------
APHI = ZABS(COMPLEX(PHIDR,PHIDI))
RS1 = RS1 + DLOG(APHI)
IF (DABS(RS1).GT.ELIM) GO TO 260
IF (KDFLG.EQ.1) IFLAG = 1
IF (RS1.LT.0.0D0) GO TO 220
IF (KDFLG.EQ.1) IFLAG = 3
220 CONTINUE
STR = PHIDR*SUMDR - PHIDI*SUMDI
STI = PHIDR*SUMDI + PHIDI*SUMDR
S2R = -CSGNI*STI
S2I = CSGNI*STR
STR = DEXP(S1R)*CSSR(IFLAG)
S1R = STR*DCOS(S1I)
S1I = STR*DSIN(S1I)
STR = S2R*S1R - S2I*S1I
S2I = S2R*S1I + S2I*S1R
S2R = STR
IF (IFLAG.NE.1) GO TO 230
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
IF (NW.EQ.0) GO TO 230
S2R = ZEROR
S2I = ZEROI
230 CONTINUE
CYR(KDFLG) = S2R
CYI(KDFLG) = S2I
C2R = S2R
C2I = S2I
S2R = S2R*CSRR(IFLAG)
S2I = S2I*CSRR(IFLAG)
C-----------------------------------------------------------------------
C ADD I AND K FUNCTIONS, K SEQUENCE IN Y(I), I=1,N
C-----------------------------------------------------------------------
S1R = YR(KK)
S1I = YI(KK)
IF (KODE.EQ.1) GO TO 250
CALL ZS1S2(ZRR, ZRI, S1R, S1I, S2R, S2I, NW, ASC, ALIM, IUF)
NZ = NZ + NW
250 CONTINUE
YR(KK) = S1R*CSPNR - S1I*CSPNI + S2R
YI(KK) = CSPNR*S1I + CSPNI*S1R + S2I
KK = KK - 1
CSPNR = -CSPNR
CSPNI = -CSPNI
IF (C2R.NE.0.0D0 .OR. C2I.NE.0.0D0) GO TO 255
KDFLG = 1
GO TO 270
255 CONTINUE
IF (KDFLG.EQ.2) GO TO 275
KDFLG = 2
GO TO 270
260 CONTINUE
IF (RS1.GT.0.0D0) GO TO 300
S2R = ZEROR
S2I = ZEROI
GO TO 230
270 CONTINUE
K = N
275 CONTINUE
IL = N - K
IF (IL.EQ.0) RETURN
C-----------------------------------------------------------------------
C RECUR BACKWARD FOR REMAINDER OF I SEQUENCE AND ADD IN THE
C K FUNCTIONS, SCALING THE I SEQUENCE DURING RECURRENCE TO KEEP
C INTERMEDIATE ARITHMETIC ON SCALE NEAR EXPONENT EXTREMES.
C-----------------------------------------------------------------------
S1R = CYR(1)
S1I = CYI(1)
S2R = CYR(2)
S2I = CYI(2)
CSR = CSRR(IFLAG)
ASCLE = BRY(IFLAG)
FN = DBLE(FLOAT(INU+IL))
DO 290 I=1,IL
C2R = S2R
C2I = S2I
S2R = S1R + (FN+FNF)*(RZR*C2R-RZI*C2I)
S2I = S1I + (FN+FNF)*(RZR*C2I+RZI*C2R)
S1R = C2R
S1I = C2I
FN = FN - 1.0D0
C2R = S2R*CSR
C2I = S2I*CSR
CKR = C2R
CKI = C2I
C1R = YR(KK)
C1I = YI(KK)
IF (KODE.EQ.1) GO TO 280
CALL ZS1S2(ZRR, ZRI, C1R, C1I, C2R, C2I, NW, ASC, ALIM, IUF)
NZ = NZ + NW
280 CONTINUE
YR(KK) = C1R*CSPNR - C1I*CSPNI + C2R
YI(KK) = C1R*CSPNI + C1I*CSPNR + C2I
KK = KK - 1
CSPNR = -CSPNR
CSPNI = -CSPNI
IF (IFLAG.GE.3) GO TO 290
C2R = DABS(CKR)
C2I = DABS(CKI)
C2M = DMAX1(C2R,C2I)
IF (C2M.LE.ASCLE) GO TO 290
IFLAG = IFLAG + 1
ASCLE = BRY(IFLAG)
S1R = S1R*CSR
S1I = S1I*CSR
S2R = CKR
S2I = CKI
S1R = S1R*CSSR(IFLAG)
S1I = S1I*CSSR(IFLAG)
S2R = S2R*CSSR(IFLAG)
S2I = S2I*CSSR(IFLAG)
CSR = CSRR(IFLAG)
290 CONTINUE
RETURN
300 CONTINUE
NZ = -1
RETURN
END

View file

@ -1,505 +0,0 @@
SUBROUTINE ZUNK2(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM,
* ALIM)
C***BEGIN PROLOGUE ZUNK2
C***REFER TO ZBESK
C
C ZUNK2 COMPUTES K(FNU,Z) AND ITS ANALYTIC CONTINUATION FROM THE
C RIGHT HALF PLANE TO THE LEFT HALF PLANE BY MEANS OF THE
C UNIFORM ASYMPTOTIC EXPANSIONS FOR H(KIND,FNU,ZN) AND J(FNU,ZN)
C WHERE ZN IS IN THE RIGHT HALF PLANE, KIND=(3-MR)/2, MR=+1 OR
C -1. HERE ZN=ZR*I OR -ZR*I WHERE ZR=Z IF Z IS IN THE RIGHT
C HALF PLANE OR ZR=-Z IF Z IS IN THE LEFT HALF PLANE. MR INDIC-
C ATES THE DIRECTION OF ROTATION FOR ANALYTIC CONTINUATION.
C NZ=-1 MEANS AN OVERFLOW WILL OCCUR
C
C***ROUTINES CALLED ZAIRY,ZKSCL,ZS1S2,ZUCHK,ZUNHJ,D1MACH,ZABS
C***END PROLOGUE ZUNK2
C COMPLEX AI,ARG,ARGD,ASUM,ASUMD,BSUM,BSUMD,CFN,CI,CIP,CK,CONE,CRSC,
C *CR1,CR2,CS,CSCL,CSGN,CSPN,CSR,CSS,CY,CZERO,C1,C2,DAI,PHI,PHID,RZ,
C *S1,S2,Y,Z,ZB,ZETA1,ZETA1D,ZETA2,ZETA2D,ZN,ZR
DOUBLE PRECISION AARG, AIC, AII, AIR, ALIM, ANG, APHI, ARGDI,
* ARGDR, ARGI, ARGR, ASC, ASCLE, ASUMDI, ASUMDR, ASUMI, ASUMR,
* BRY, BSUMDI, BSUMDR, BSUMI, BSUMR, CAR, CIPI, CIPR, CKI, CKR,
* CONER, CRSC, CR1I, CR1R, CR2I, CR2R, CSCL, CSGNI, CSI,
* CSPNI, CSPNR, CSR, CSRR, CSSR, CYI, CYR, C1I, C1R, C2I, C2M,
* C2R, DAII, DAIR, ELIM, FMR, FN, FNF, FNU, HPI, PHIDI, PHIDR,
* PHII, PHIR, PI, PTI, PTR, RAST, RAZR, RS1, RZI, RZR, SAR, SGN,
* STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, YY, ZBI, ZBR, ZEROI,
* ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZET1DI, ZET1DR, ZET2DI,
* ZET2DR, ZI, ZNI, ZNR, ZR, ZRI, ZRR, D1MACH, ZABS
INTEGER I, IB, IFLAG, IFN, IL, IN, INU, IUF, K, KDFLG, KFLAG, KK,
* KODE, MR, N, NAI, NDAI, NW, NZ, IDUM, J, IPARD, IC
DIMENSION BRY(3), YR(N), YI(N), ASUMR(2), ASUMI(2), BSUMR(2),
* BSUMI(2), PHIR(2), PHII(2), ARGR(2), ARGI(2), ZETA1R(2),
* ZETA1I(2), ZETA2R(2), ZETA2I(2), CYR(2), CYI(2), CIPR(4),
* CIPI(4), CSSR(3), CSRR(3)
DATA ZEROR,ZEROI,CONER,CR1R,CR1I,CR2R,CR2I /
1 0.0D0, 0.0D0, 1.0D0,
1 1.0D0,1.73205080756887729D0 , -0.5D0,-8.66025403784438647D-01 /
DATA HPI, PI, AIC /
1 1.57079632679489662D+00, 3.14159265358979324D+00,
1 1.26551212348464539D+00/
DATA CIPR(1),CIPI(1),CIPR(2),CIPI(2),CIPR(3),CIPI(3),CIPR(4),
* CIPI(4) /
1 1.0D0,0.0D0 , 0.0D0,-1.0D0 , -1.0D0,0.0D0 , 0.0D0,1.0D0 /
C
KDFLG = 1
NZ = 0
C-----------------------------------------------------------------------
C EXP(-ALIM)=EXP(-ELIM)/TOL=APPROX. ONE PRECISION GREATER THAN
C THE UNDERFLOW LIMIT
C-----------------------------------------------------------------------
CSCL = 1.0D0/TOL
CRSC = TOL
CSSR(1) = CSCL
CSSR(2) = CONER
CSSR(3) = CRSC
CSRR(1) = CRSC
CSRR(2) = CONER
CSRR(3) = CSCL
BRY(1) = 1.0D+3*D1MACH(1)/TOL
BRY(2) = 1.0D0/BRY(1)
BRY(3) = D1MACH(2)
ZRR = ZR
ZRI = ZI
IF (ZR.GE.0.0D0) GO TO 10
ZRR = -ZR
ZRI = -ZI
10 CONTINUE
YY = ZRI
ZNR = ZRI
ZNI = -ZRR
ZBR = ZRR
ZBI = ZRI
INU = INT(SNGL(FNU))
FNF = FNU - DBLE(FLOAT(INU))
ANG = -HPI*FNF
CAR = DCOS(ANG)
SAR = DSIN(ANG)
C2R = HPI*SAR
C2I = -HPI*CAR
KK = MOD(INU,4) + 1
STR = C2R*CIPR(KK) - C2I*CIPI(KK)
STI = C2R*CIPI(KK) + C2I*CIPR(KK)
CSR = CR1R*STR - CR1I*STI
CSI = CR1R*STI + CR1I*STR
IF (YY.GT.0.0D0) GO TO 20
ZNR = -ZNR
ZBI = -ZBI
20 CONTINUE
C-----------------------------------------------------------------------
C K(FNU,Z) IS COMPUTED FROM H(2,FNU,-I*Z) WHERE Z IS IN THE FIRST
C QUADRANT. FOURTH QUADRANT VALUES (YY.LE.0.0E0) ARE COMPUTED BY
C CONJUGATION SINCE THE K FUNCTION IS REAL ON THE POSITIVE REAL AXIS
C-----------------------------------------------------------------------
J = 2
DO 80 I=1,N
C-----------------------------------------------------------------------
C J FLIP FLOPS BETWEEN 1 AND 2 IN J = 3 - J
C-----------------------------------------------------------------------
J = 3 - J
FN = FNU + DBLE(FLOAT(I-1))
CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIR(J), PHII(J), ARGR(J),
* ARGI(J), ZETA1R(J), ZETA1I(J), ZETA2R(J), ZETA2I(J), ASUMR(J),
* ASUMI(J), BSUMR(J), BSUMI(J))
IF (KODE.EQ.1) GO TO 30
STR = ZBR + ZETA2R(J)
STI = ZBI + ZETA2I(J)
RAST = FN/ZABS(COMPLEX(STR,STI))
STR = STR*RAST*RAST
STI = -STI*RAST*RAST
S1R = ZETA1R(J) - STR
S1I = ZETA1I(J) - STI
GO TO 40
30 CONTINUE
S1R = ZETA1R(J) - ZETA2R(J)
S1I = ZETA1I(J) - ZETA2I(J)
40 CONTINUE
C-----------------------------------------------------------------------
C TEST FOR UNDERFLOW AND OVERFLOW
C-----------------------------------------------------------------------
RS1 = S1R
IF (DABS(RS1).GT.ELIM) GO TO 70
IF (KDFLG.EQ.1) KFLAG = 2
IF (DABS(RS1).LT.ALIM) GO TO 50
C-----------------------------------------------------------------------
C REFINE TEST AND SCALE
C-----------------------------------------------------------------------
APHI = ZABS(COMPLEX(PHIR(J),PHII(J)))
AARG = ZABS(COMPLEX(ARGR(J),ARGI(J)))
RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC
IF (DABS(RS1).GT.ELIM) GO TO 70
IF (KDFLG.EQ.1) KFLAG = 1
IF (RS1.LT.0.0D0) GO TO 50
IF (KDFLG.EQ.1) KFLAG = 3
50 CONTINUE
C-----------------------------------------------------------------------
C SCALE S1 TO KEEP INTERMEDIATE ARITHMETIC ON SCALE NEAR
C EXPONENT EXTREMES
C-----------------------------------------------------------------------
C2R = ARGR(J)*CR2R - ARGI(J)*CR2I
C2I = ARGR(J)*CR2I + ARGI(J)*CR2R
CALL ZAIRY(C2R, C2I, 0, 2, AIR, AII, NAI, IDUM)
CALL ZAIRY(C2R, C2I, 1, 2, DAIR, DAII, NDAI, IDUM)
STR = DAIR*BSUMR(J) - DAII*BSUMI(J)
STI = DAIR*BSUMI(J) + DAII*BSUMR(J)
PTR = STR*CR2R - STI*CR2I
PTI = STR*CR2I + STI*CR2R
STR = PTR + (AIR*ASUMR(J)-AII*ASUMI(J))
STI = PTI + (AIR*ASUMI(J)+AII*ASUMR(J))
PTR = STR*PHIR(J) - STI*PHII(J)
PTI = STR*PHII(J) + STI*PHIR(J)
S2R = PTR*CSR - PTI*CSI
S2I = PTR*CSI + PTI*CSR
STR = DEXP(S1R)*CSSR(KFLAG)
S1R = STR*DCOS(S1I)
S1I = STR*DSIN(S1I)
STR = S2R*S1R - S2I*S1I
S2I = S1R*S2I + S2R*S1I
S2R = STR
IF (KFLAG.NE.1) GO TO 60
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
IF (NW.NE.0) GO TO 70
60 CONTINUE
IF (YY.LE.0.0D0) S2I = -S2I
CYR(KDFLG) = S2R
CYI(KDFLG) = S2I
YR(I) = S2R*CSRR(KFLAG)
YI(I) = S2I*CSRR(KFLAG)
STR = CSI
CSI = -CSR
CSR = STR
IF (KDFLG.EQ.2) GO TO 85
KDFLG = 2
GO TO 80
70 CONTINUE
IF (RS1.GT.0.0D0) GO TO 320
C-----------------------------------------------------------------------
C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW
C-----------------------------------------------------------------------
IF (ZR.LT.0.0D0) GO TO 320
KDFLG = 1
YR(I)=ZEROR
YI(I)=ZEROI
NZ=NZ+1
STR = CSI
CSI =-CSR
CSR = STR
IF (I.EQ.1) GO TO 80
IF ((YR(I-1).EQ.ZEROR).AND.(YI(I-1).EQ.ZEROI)) GO TO 80
YR(I-1)=ZEROR
YI(I-1)=ZEROI
NZ=NZ+1
80 CONTINUE
I = N
85 CONTINUE
RAZR = 1.0D0/ZABS(COMPLEX(ZRR,ZRI))
STR = ZRR*RAZR
STI = -ZRI*RAZR
RZR = (STR+STR)*RAZR
RZI = (STI+STI)*RAZR
CKR = FN*RZR
CKI = FN*RZI
IB = I + 1
IF (N.LT.IB) GO TO 180
C-----------------------------------------------------------------------
C TEST LAST MEMBER FOR UNDERFLOW AND OVERFLOW. SET SEQUENCE TO ZERO
C ON UNDERFLOW.
C-----------------------------------------------------------------------
FN = FNU + DBLE(FLOAT(N-1))
IPARD = 1
IF (MR.NE.0) IPARD = 0
CALL ZUNHJ(ZNR, ZNI, FN, IPARD, TOL, PHIDR, PHIDI, ARGDR, ARGDI,
* ZET1DR, ZET1DI, ZET2DR, ZET2DI, ASUMDR, ASUMDI, BSUMDR, BSUMDI)
IF (KODE.EQ.1) GO TO 90
STR = ZBR + ZET2DR
STI = ZBI + ZET2DI
RAST = FN/ZABS(COMPLEX(STR,STI))
STR = STR*RAST*RAST
STI = -STI*RAST*RAST
S1R = ZET1DR - STR
S1I = ZET1DI - STI
GO TO 100
90 CONTINUE
S1R = ZET1DR - ZET2DR
S1I = ZET1DI - ZET2DI
100 CONTINUE
RS1 = S1R
IF (DABS(RS1).GT.ELIM) GO TO 105
IF (DABS(RS1).LT.ALIM) GO TO 120
C----------------------------------------------------------------------------
C REFINE ESTIMATE AND TEST
C-------------------------------------------------------------------------
APHI = ZABS(COMPLEX(PHIDR,PHIDI))
RS1 = RS1+DLOG(APHI)
IF (DABS(RS1).LT.ELIM) GO TO 120
105 CONTINUE
IF (RS1.GT.0.0D0) GO TO 320
C-----------------------------------------------------------------------
C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW
C-----------------------------------------------------------------------
IF (ZR.LT.0.0D0) GO TO 320
NZ = N
DO 106 I=1,N
YR(I) = ZEROR
YI(I) = ZEROI
106 CONTINUE
RETURN
120 CONTINUE
S1R = CYR(1)
S1I = CYI(1)
S2R = CYR(2)
S2I = CYI(2)
C1R = CSRR(KFLAG)
ASCLE = BRY(KFLAG)
DO 130 I=IB,N
C2R = S2R
C2I = S2I
S2R = CKR*C2R - CKI*C2I + S1R
S2I = CKR*C2I + CKI*C2R + S1I
S1R = C2R
S1I = C2I
CKR = CKR + RZR
CKI = CKI + RZI
C2R = S2R*C1R
C2I = S2I*C1R
YR(I) = C2R
YI(I) = C2I
IF (KFLAG.GE.3) GO TO 130
STR = DABS(C2R)
STI = DABS(C2I)
C2M = DMAX1(STR,STI)
IF (C2M.LE.ASCLE) GO TO 130
KFLAG = KFLAG + 1
ASCLE = BRY(KFLAG)
S1R = S1R*C1R
S1I = S1I*C1R
S2R = C2R
S2I = C2I
S1R = S1R*CSSR(KFLAG)
S1I = S1I*CSSR(KFLAG)
S2R = S2R*CSSR(KFLAG)
S2I = S2I*CSSR(KFLAG)
C1R = CSRR(KFLAG)
130 CONTINUE
180 CONTINUE
IF (MR.EQ.0) RETURN
C-----------------------------------------------------------------------
C ANALYTIC CONTINUATION FOR RE(Z).LT.0.0D0
C-----------------------------------------------------------------------
NZ = 0
FMR = DBLE(FLOAT(MR))
SGN = -DSIGN(PI,FMR)
C-----------------------------------------------------------------------
C CSPN AND CSGN ARE COEFF OF K AND I FUNCIONS RESP.
C-----------------------------------------------------------------------
CSGNI = SGN
IF (YY.LE.0.0D0) CSGNI = -CSGNI
IFN = INU + N - 1
ANG = FNF*SGN
CSPNR = DCOS(ANG)
CSPNI = DSIN(ANG)
IF (MOD(IFN,2).EQ.0) GO TO 190
CSPNR = -CSPNR
CSPNI = -CSPNI
190 CONTINUE
C-----------------------------------------------------------------------
C CS=COEFF OF THE J FUNCTION TO GET THE I FUNCTION. I(FNU,Z) IS
C COMPUTED FROM EXP(I*FNU*HPI)*J(FNU,-I*Z) WHERE Z IS IN THE FIRST
C QUADRANT. FOURTH QUADRANT VALUES (YY.LE.0.0E0) ARE COMPUTED BY
C CONJUGATION SINCE THE I FUNCTION IS REAL ON THE POSITIVE REAL AXIS
C-----------------------------------------------------------------------
CSR = SAR*CSGNI
CSI = CAR*CSGNI
IN = MOD(IFN,4) + 1
C2R = CIPR(IN)
C2I = CIPI(IN)
STR = CSR*C2R + CSI*C2I
CSI = -CSR*C2I + CSI*C2R
CSR = STR
ASC = BRY(1)
IUF = 0
KK = N
KDFLG = 1
IB = IB - 1
IC = IB - 1
DO 290 K=1,N
FN = FNU + DBLE(FLOAT(KK-1))
C-----------------------------------------------------------------------
C LOGIC TO SORT OUT CASES WHOSE PARAMETERS WERE SET FOR THE K
C FUNCTION ABOVE
C-----------------------------------------------------------------------
IF (N.GT.2) GO TO 175
172 CONTINUE
PHIDR = PHIR(J)
PHIDI = PHII(J)
ARGDR = ARGR(J)
ARGDI = ARGI(J)
ZET1DR = ZETA1R(J)
ZET1DI = ZETA1I(J)
ZET2DR = ZETA2R(J)
ZET2DI = ZETA2I(J)
ASUMDR = ASUMR(J)
ASUMDI = ASUMI(J)
BSUMDR = BSUMR(J)
BSUMDI = BSUMI(J)
J = 3 - J
GO TO 210
175 CONTINUE
IF ((KK.EQ.N).AND.(IB.LT.N)) GO TO 210
IF ((KK.EQ.IB).OR.(KK.EQ.IC)) GO TO 172
CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIDR, PHIDI, ARGDR,
* ARGDI, ZET1DR, ZET1DI, ZET2DR, ZET2DI, ASUMDR,
* ASUMDI, BSUMDR, BSUMDI)
210 CONTINUE
IF (KODE.EQ.1) GO TO 220
STR = ZBR + ZET2DR
STI = ZBI + ZET2DI
RAST = FN/ZABS(COMPLEX(STR,STI))
STR = STR*RAST*RAST
STI = -STI*RAST*RAST
S1R = -ZET1DR + STR
S1I = -ZET1DI + STI
GO TO 230
220 CONTINUE
S1R = -ZET1DR + ZET2DR
S1I = -ZET1DI + ZET2DI
230 CONTINUE
C-----------------------------------------------------------------------
C TEST FOR UNDERFLOW AND OVERFLOW
C-----------------------------------------------------------------------
RS1 = S1R
IF (DABS(RS1).GT.ELIM) GO TO 280
IF (KDFLG.EQ.1) IFLAG = 2
IF (DABS(RS1).LT.ALIM) GO TO 240
C-----------------------------------------------------------------------
C REFINE TEST AND SCALE
C-----------------------------------------------------------------------
APHI = ZABS(COMPLEX(PHIDR,PHIDI))
AARG = ZABS(COMPLEX(ARGDR,ARGDI))
RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC
IF (DABS(RS1).GT.ELIM) GO TO 280
IF (KDFLG.EQ.1) IFLAG = 1
IF (RS1.LT.0.0D0) GO TO 240
IF (KDFLG.EQ.1) IFLAG = 3
240 CONTINUE
CALL ZAIRY(ARGDR, ARGDI, 0, 2, AIR, AII, NAI, IDUM)
CALL ZAIRY(ARGDR, ARGDI, 1, 2, DAIR, DAII, NDAI, IDUM)
STR = DAIR*BSUMDR - DAII*BSUMDI
STI = DAIR*BSUMDI + DAII*BSUMDR
STR = STR + (AIR*ASUMDR-AII*ASUMDI)
STI = STI + (AIR*ASUMDI+AII*ASUMDR)
PTR = STR*PHIDR - STI*PHIDI
PTI = STR*PHIDI + STI*PHIDR
S2R = PTR*CSR - PTI*CSI
S2I = PTR*CSI + PTI*CSR
STR = DEXP(S1R)*CSSR(IFLAG)
S1R = STR*DCOS(S1I)
S1I = STR*DSIN(S1I)
STR = S2R*S1R - S2I*S1I
S2I = S2R*S1I + S2I*S1R
S2R = STR
IF (IFLAG.NE.1) GO TO 250
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
IF (NW.EQ.0) GO TO 250
S2R = ZEROR
S2I = ZEROI
250 CONTINUE
IF (YY.LE.0.0D0) S2I = -S2I
CYR(KDFLG) = S2R
CYI(KDFLG) = S2I
C2R = S2R
C2I = S2I
S2R = S2R*CSRR(IFLAG)
S2I = S2I*CSRR(IFLAG)
C-----------------------------------------------------------------------
C ADD I AND K FUNCTIONS, K SEQUENCE IN Y(I), I=1,N
C-----------------------------------------------------------------------
S1R = YR(KK)
S1I = YI(KK)
IF (KODE.EQ.1) GO TO 270
CALL ZS1S2(ZRR, ZRI, S1R, S1I, S2R, S2I, NW, ASC, ALIM, IUF)
NZ = NZ + NW
270 CONTINUE
YR(KK) = S1R*CSPNR - S1I*CSPNI + S2R
YI(KK) = S1R*CSPNI + S1I*CSPNR + S2I
KK = KK - 1
CSPNR = -CSPNR
CSPNI = -CSPNI
STR = CSI
CSI = -CSR
CSR = STR
IF (C2R.NE.0.0D0 .OR. C2I.NE.0.0D0) GO TO 255
KDFLG = 1
GO TO 290
255 CONTINUE
IF (KDFLG.EQ.2) GO TO 295
KDFLG = 2
GO TO 290
280 CONTINUE
IF (RS1.GT.0.0D0) GO TO 320
S2R = ZEROR
S2I = ZEROI
GO TO 250
290 CONTINUE
K = N
295 CONTINUE
IL = N - K
IF (IL.EQ.0) RETURN
C-----------------------------------------------------------------------
C RECUR BACKWARD FOR REMAINDER OF I SEQUENCE AND ADD IN THE
C K FUNCTIONS, SCALING THE I SEQUENCE DURING RECURRENCE TO KEEP
C INTERMEDIATE ARITHMETIC ON SCALE NEAR EXPONENT EXTREMES.
C-----------------------------------------------------------------------
S1R = CYR(1)
S1I = CYI(1)
S2R = CYR(2)
S2I = CYI(2)
CSR = CSRR(IFLAG)
ASCLE = BRY(IFLAG)
FN = DBLE(FLOAT(INU+IL))
DO 310 I=1,IL
C2R = S2R
C2I = S2I
S2R = S1R + (FN+FNF)*(RZR*C2R-RZI*C2I)
S2I = S1I + (FN+FNF)*(RZR*C2I+RZI*C2R)
S1R = C2R
S1I = C2I
FN = FN - 1.0D0
C2R = S2R*CSR
C2I = S2I*CSR
CKR = C2R
CKI = C2I
C1R = YR(KK)
C1I = YI(KK)
IF (KODE.EQ.1) GO TO 300
CALL ZS1S2(ZRR, ZRI, C1R, C1I, C2R, C2I, NW, ASC, ALIM, IUF)
NZ = NZ + NW
300 CONTINUE
YR(KK) = C1R*CSPNR - C1I*CSPNI + C2R
YI(KK) = C1R*CSPNI + C1I*CSPNR + C2I
KK = KK - 1
CSPNR = -CSPNR
CSPNI = -CSPNI
IF (IFLAG.GE.3) GO TO 310
C2R = DABS(CKR)
C2I = DABS(CKI)
C2M = DMAX1(C2R,C2I)
IF (C2M.LE.ASCLE) GO TO 310
IFLAG = IFLAG + 1
ASCLE = BRY(IFLAG)
S1R = S1R*CSR
S1I = S1I*CSR
S2R = CKR
S2I = CKI
S1R = S1R*CSSR(IFLAG)
S1I = S1I*CSSR(IFLAG)
S2R = S2R*CSSR(IFLAG)
S2I = S2I*CSSR(IFLAG)
CSR = CSRR(IFLAG)
310 CONTINUE
RETURN
320 CONTINUE
NZ = -1
RETURN
END

View file

@ -1,194 +0,0 @@
SUBROUTINE ZUOIK(ZR, ZI, FNU, KODE, IKFLG, N, YR, YI, NUF, TOL,
* ELIM, ALIM)
C***BEGIN PROLOGUE ZUOIK
C***REFER TO ZBESI,ZBESK,ZBESH
C
C ZUOIK COMPUTES THE LEADING TERMS OF THE UNIFORM ASYMPTOTIC
C EXPANSIONS FOR THE I AND K FUNCTIONS AND COMPARES THEM
C (IN LOGARITHMIC FORM) TO ALIM AND ELIM FOR OVER AND UNDERFLOW
C WHERE ALIM.LT.ELIM. IF THE MAGNITUDE, BASED ON THE LEADING
C EXPONENTIAL, IS LESS THAN ALIM OR GREATER THAN -ALIM, THEN
C THE RESULT IS ON SCALE. IF NOT, THEN A REFINED TEST USING OTHER
C MULTIPLIERS (IN LOGARITHMIC FORM) IS MADE BASED ON ELIM. HERE
C EXP(-ELIM)=SMALLEST MACHINE NUMBER*1.0E+3 AND EXP(-ALIM)=
C EXP(-ELIM)/TOL
C
C IKFLG=1 MEANS THE I SEQUENCE IS TESTED
C =2 MEANS THE K SEQUENCE IS TESTED
C NUF = 0 MEANS THE LAST MEMBER OF THE SEQUENCE IS ON SCALE
C =-1 MEANS AN OVERFLOW WOULD OCCUR
C IKFLG=1 AND NUF.GT.0 MEANS THE LAST NUF Y VALUES WERE SET TO ZERO
C THE FIRST N-NUF VALUES MUST BE SET BY ANOTHER ROUTINE
C IKFLG=2 AND NUF.EQ.N MEANS ALL Y VALUES WERE SET TO ZERO
C IKFLG=2 AND 0.LT.NUF.LT.N NOT CONSIDERED. Y MUST BE SET BY
C ANOTHER ROUTINE
C
C***ROUTINES CALLED ZUCHK,ZUNHJ,ZUNIK,D1MACH,ZABS,ZLOG
C***END PROLOGUE ZUOIK
C COMPLEX ARG,ASUM,BSUM,CWRK,CZ,CZERO,PHI,SUM,Y,Z,ZB,ZETA1,ZETA2,ZN,
C *ZR
DOUBLE PRECISION AARG, AIC, ALIM, APHI, ARGI, ARGR, ASUMI, ASUMR,
* ASCLE, AX, AY, BSUMI, BSUMR, CWRKI, CWRKR, CZI, CZR, ELIM, FNN,
* FNU, GNN, GNU, PHII, PHIR, RCZ, STR, STI, SUMI, SUMR, TOL, YI,
* YR, ZBI, ZBR, ZEROI, ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZI,
* ZNI, ZNR, ZR, ZRI, ZRR, D1MACH, ZABS
INTEGER I, IDUM, IFORM, IKFLG, INIT, KODE, N, NN, NUF, NW
DIMENSION YR(N), YI(N), CWRKR(16), CWRKI(16)
DATA ZEROR,ZEROI / 0.0D0, 0.0D0 /
DATA AIC / 1.265512123484645396D+00 /
NUF = 0
NN = N
ZRR = ZR
ZRI = ZI
IF (ZR.GE.0.0D0) GO TO 10
ZRR = -ZR
ZRI = -ZI
10 CONTINUE
ZBR = ZRR
ZBI = ZRI
AX = DABS(ZR)*1.7321D0
AY = DABS(ZI)
IFORM = 1
IF (AY.GT.AX) IFORM = 2
GNU = DMAX1(FNU,1.0D0)
IF (IKFLG.EQ.1) GO TO 20
FNN = DBLE(FLOAT(NN))
GNN = FNU + FNN - 1.0D0
GNU = DMAX1(GNN,FNN)
20 CONTINUE
C-----------------------------------------------------------------------
C ONLY THE MAGNITUDE OF ARG AND PHI ARE NEEDED ALONG WITH THE
C REAL PARTS OF ZETA1, ZETA2 AND ZB. NO ATTEMPT IS MADE TO GET
C THE SIGN OF THE IMAGINARY PART CORRECT.
C-----------------------------------------------------------------------
IF (IFORM.EQ.2) GO TO 30
INIT = 0
CALL ZUNIK(ZRR, ZRI, GNU, IKFLG, 1, TOL, INIT, PHIR, PHII,
* ZETA1R, ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI)
CZR = -ZETA1R + ZETA2R
CZI = -ZETA1I + ZETA2I
GO TO 50
30 CONTINUE
ZNR = ZRI
ZNI = -ZRR
IF (ZI.GT.0.0D0) GO TO 40
ZNR = -ZNR
40 CONTINUE
CALL ZUNHJ(ZNR, ZNI, GNU, 1, TOL, PHIR, PHII, ARGR, ARGI, ZETA1R,
* ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI)
CZR = -ZETA1R + ZETA2R
CZI = -ZETA1I + ZETA2I
AARG = ZABS(COMPLEX(ARGR,ARGI))
50 CONTINUE
IF (KODE.EQ.1) GO TO 60
CZR = CZR - ZBR
CZI = CZI - ZBI
60 CONTINUE
IF (IKFLG.EQ.1) GO TO 70
CZR = -CZR
CZI = -CZI
70 CONTINUE
APHI = ZABS(COMPLEX(PHIR,PHII))
RCZ = CZR
C-----------------------------------------------------------------------
C OVERFLOW TEST
C-----------------------------------------------------------------------
IF (RCZ.GT.ELIM) GO TO 210
IF (RCZ.LT.ALIM) GO TO 80
RCZ = RCZ + DLOG(APHI)
IF (IFORM.EQ.2) RCZ = RCZ - 0.25D0*DLOG(AARG) - AIC
IF (RCZ.GT.ELIM) GO TO 210
GO TO 130
80 CONTINUE
C-----------------------------------------------------------------------
C UNDERFLOW TEST
C-----------------------------------------------------------------------
IF (RCZ.LT.(-ELIM)) GO TO 90
IF (RCZ.GT.(-ALIM)) GO TO 130
RCZ = RCZ + DLOG(APHI)
IF (IFORM.EQ.2) RCZ = RCZ - 0.25D0*DLOG(AARG) - AIC
IF (RCZ.GT.(-ELIM)) GO TO 110
90 CONTINUE
DO 100 I=1,NN
YR(I) = ZEROR
YI(I) = ZEROI
100 CONTINUE
NUF = NN
RETURN
110 CONTINUE
ASCLE = 1.0D+3*D1MACH(1)/TOL
CALL ZLOG(PHIR, PHII, STR, STI, IDUM)
CZR = CZR + STR
CZI = CZI + STI
IF (IFORM.EQ.1) GO TO 120
CALL ZLOG(ARGR, ARGI, STR, STI, IDUM)
CZR = CZR - 0.25D0*STR - AIC
CZI = CZI - 0.25D0*STI
120 CONTINUE
AX = DEXP(RCZ)/TOL
AY = CZI
CZR = AX*DCOS(AY)
CZI = AX*DSIN(AY)
CALL ZUCHK(CZR, CZI, NW, ASCLE, TOL)
IF (NW.NE.0) GO TO 90
130 CONTINUE
IF (IKFLG.EQ.2) RETURN
IF (N.EQ.1) RETURN
C-----------------------------------------------------------------------
C SET UNDERFLOWS ON I SEQUENCE
C-----------------------------------------------------------------------
140 CONTINUE
GNU = FNU + DBLE(FLOAT(NN-1))
IF (IFORM.EQ.2) GO TO 150
INIT = 0
CALL ZUNIK(ZRR, ZRI, GNU, IKFLG, 1, TOL, INIT, PHIR, PHII,
* ZETA1R, ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI)
CZR = -ZETA1R + ZETA2R
CZI = -ZETA1I + ZETA2I
GO TO 160
150 CONTINUE
CALL ZUNHJ(ZNR, ZNI, GNU, 1, TOL, PHIR, PHII, ARGR, ARGI, ZETA1R,
* ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI)
CZR = -ZETA1R + ZETA2R
CZI = -ZETA1I + ZETA2I
AARG = ZABS(COMPLEX(ARGR,ARGI))
160 CONTINUE
IF (KODE.EQ.1) GO TO 170
CZR = CZR - ZBR
CZI = CZI - ZBI
170 CONTINUE
APHI = ZABS(COMPLEX(PHIR,PHII))
RCZ = CZR
IF (RCZ.LT.(-ELIM)) GO TO 180
IF (RCZ.GT.(-ALIM)) RETURN
RCZ = RCZ + DLOG(APHI)
IF (IFORM.EQ.2) RCZ = RCZ - 0.25D0*DLOG(AARG) - AIC
IF (RCZ.GT.(-ELIM)) GO TO 190
180 CONTINUE
YR(NN) = ZEROR
YI(NN) = ZEROI
NN = NN - 1
NUF = NUF + 1
IF (NN.EQ.0) RETURN
GO TO 140
190 CONTINUE
ASCLE = 1.0D+3*D1MACH(1)/TOL
CALL ZLOG(PHIR, PHII, STR, STI, IDUM)
CZR = CZR + STR
CZI = CZI + STI
IF (IFORM.EQ.1) GO TO 200
CALL ZLOG(ARGR, ARGI, STR, STI, IDUM)
CZR = CZR - 0.25D0*STR - AIC
CZI = CZI - 0.25D0*STI
200 CONTINUE
AX = DEXP(RCZ)/TOL
AY = CZI
CZR = AX*DCOS(AY)
CZI = AX*DSIN(AY)
CALL ZUCHK(CZR, CZI, NW, ASCLE, TOL)
IF (NW.NE.0) GO TO 180
RETURN
210 CONTINUE
NUF = -1
RETURN
END

View file

@ -1,94 +0,0 @@
SUBROUTINE ZWRSK(ZRR, ZRI, FNU, KODE, N, YR, YI, NZ, CWR, CWI,
* TOL, ELIM, ALIM)
C***BEGIN PROLOGUE ZWRSK
C***REFER TO ZBESI,ZBESK
C
C ZWRSK COMPUTES THE I BESSEL FUNCTION FOR RE(Z).GE.0.0 BY
C NORMALIZING THE I FUNCTION RATIOS FROM ZRATI BY THE WRONSKIAN
C
C***ROUTINES CALLED D1MACH,ZBKNU,ZRATI,ZABS
C***END PROLOGUE ZWRSK
C COMPLEX CINU,CSCL,CT,CW,C1,C2,RCT,ST,Y,ZR
DOUBLE PRECISION ACT, ACW, ALIM, ASCLE, CINUI, CINUR, CSCLR, CTI,
* CTR, CWI, CWR, C1I, C1R, C2I, C2R, ELIM, FNU, PTI, PTR, RACT,
* STI, STR, TOL, YI, YR, ZRI, ZRR, ZABS, D1MACH
INTEGER I, KODE, N, NW, NZ
DIMENSION YR(N), YI(N), CWR(2), CWI(2)
C-----------------------------------------------------------------------
C I(FNU+I-1,Z) BY BACKWARD RECURRENCE FOR RATIOS
C Y(I)=I(FNU+I,Z)/I(FNU+I-1,Z) FROM CRATI NORMALIZED BY THE
C WRONSKIAN WITH K(FNU,Z) AND K(FNU+1,Z) FROM CBKNU.
C-----------------------------------------------------------------------
NZ = 0
CALL ZBKNU(ZRR, ZRI, FNU, KODE, 2, CWR, CWI, NW, TOL, ELIM, ALIM)
IF (NW.NE.0) GO TO 50
CALL ZRATI(ZRR, ZRI, FNU, N, YR, YI, TOL)
C-----------------------------------------------------------------------
C RECUR FORWARD ON I(FNU+1,Z) = R(FNU,Z)*I(FNU,Z),
C R(FNU+J-1,Z)=Y(J), J=1,...,N
C-----------------------------------------------------------------------
CINUR = 1.0D0
CINUI = 0.0D0
IF (KODE.EQ.1) GO TO 10
CINUR = DCOS(ZRI)
CINUI = DSIN(ZRI)
10 CONTINUE
C-----------------------------------------------------------------------
C ON LOW EXPONENT MACHINES THE K FUNCTIONS CAN BE CLOSE TO BOTH
C THE UNDER AND OVERFLOW LIMITS AND THE NORMALIZATION MUST BE
C SCALED TO PREVENT OVER OR UNDERFLOW. CUOIK HAS DETERMINED THAT
C THE RESULT IS ON SCALE.
C-----------------------------------------------------------------------
ACW = ZABS(COMPLEX(CWR(2),CWI(2)))
ASCLE = 1.0D+3*D1MACH(1)/TOL
CSCLR = 1.0D0
IF (ACW.GT.ASCLE) GO TO 20
CSCLR = 1.0D0/TOL
GO TO 30
20 CONTINUE
ASCLE = 1.0D0/ASCLE
IF (ACW.LT.ASCLE) GO TO 30
CSCLR = TOL
30 CONTINUE
C1R = CWR(1)*CSCLR
C1I = CWI(1)*CSCLR
C2R = CWR(2)*CSCLR
C2I = CWI(2)*CSCLR
STR = YR(1)
STI = YI(1)
C-----------------------------------------------------------------------
C CINU=CINU*(CONJG(CT)/CABS(CT))*(1.0D0/CABS(CT) PREVENTS
C UNDER- OR OVERFLOW PREMATURELY BY SQUARING CABS(CT)
C-----------------------------------------------------------------------
PTR = STR*C1R - STI*C1I
PTI = STR*C1I + STI*C1R
PTR = PTR + C2R
PTI = PTI + C2I
CTR = ZRR*PTR - ZRI*PTI
CTI = ZRR*PTI + ZRI*PTR
ACT = ZABS(COMPLEX(CTR,CTI))
RACT = 1.0D0/ACT
CTR = CTR*RACT
CTI = -CTI*RACT
PTR = CINUR*RACT
PTI = CINUI*RACT
CINUR = PTR*CTR - PTI*CTI
CINUI = PTR*CTI + PTI*CTR
YR(1) = CINUR*CSCLR
YI(1) = CINUI*CSCLR
IF (N.EQ.1) RETURN
DO 40 I=2,N
PTR = STR*CINUR - STI*CINUI
CINUI = STR*CINUI + STI*CINUR
CINUR = PTR
STR = YR(I)
STI = YI(I)
YR(I) = CINUR*CSCLR
YI(I) = CINUI*CSCLR
40 CONTINUE
RETURN
50 CONTINUE
NZ = -1
IF(NW.EQ.(-2)) NZ=-2
RETURN
END