/* @(#)e_fmod.c 1.3 95/01/18 */ /*- * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #include "cdefs-compat.h" //__FBSDID("$FreeBSD: src/lib/msun/src/s_remquol.c,v 1.2 2008/07/31 20:09:47 das Exp $"); #include #include #include "fpmath.h" #include "openlibm.h" #include "math_private.h" #define BIAS (LDBL_MAX_EXP - 1) #if LDBL_MANL_SIZE > 32 typedef u_int64_t manl_t; #else typedef u_int32_t manl_t; #endif #if LDBL_MANH_SIZE > 32 typedef u_int64_t manh_t; #else typedef u_int32_t manh_t; #endif /* * These macros add and remove an explicit integer bit in front of the * fractional mantissa, if the architecture doesn't have such a bit by * default already. */ #ifdef LDBL_IMPLICIT_NBIT #define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE)) #define HFRAC_BITS LDBL_MANH_SIZE #else #define SET_NBIT(hx) (hx) #define HFRAC_BITS (LDBL_MANH_SIZE - 1) #endif #define MANL_SHIFT (LDBL_MANL_SIZE - 1) static const long double Zero[] = {0.0L, -0.0L}; /* * Return the IEEE remainder and set *quo to the last n bits of the * quotient, rounded to the nearest integer. We choose n=31 because * we wind up computing all the integer bits of the quotient anyway as * a side-effect of computing the remainder by the shift and subtract * method. In practice, this is far more bits than are needed to use * remquo in reduction algorithms. * * Assumptions: * - The low part of the mantissa fits in a manl_t exactly. * - The high part of the mantissa fits in an int64_t with enough room * for an explicit integer bit in front of the fractional bits. */ long double remquol(long double x, long double y, int *quo) { union IEEEl2bits ux, uy; int64_t hx,hz; /* We need a carry bit even if LDBL_MANH_SIZE is 32. */ manh_t hy; manl_t lx,ly,lz; int ix,iy,n,q,sx,sxy; ux.e = x; uy.e = y; sx = ux.bits.sign; sxy = sx ^ uy.bits.sign; ux.bits.sign = 0; /* |x| */ uy.bits.sign = 0; /* |y| */ x = ux.e; /* purge off exception values */ if((uy.bits.exp|uy.bits.manh|uy.bits.manl)==0 || /* y=0 */ (ux.bits.exp == BIAS + LDBL_MAX_EXP) || /* or x not finite */ (uy.bits.exp == BIAS + LDBL_MAX_EXP && ((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl)!=0)) /* or y is NaN */ return (x*y)/(x*y); if(ux.bits.exp<=uy.bits.exp) { if((ux.bits.exp>MANL_SHIFT); lx = lx+lx;} else {hx = hz+hz+(lz>>MANL_SHIFT); lx = lz+lz; q++;} q <<= 1; } hz=hx-hy;lz=lx-ly; if(lx=0) {hx=hz;lx=lz;q++;} /* convert back to floating value and restore the sign */ if((hx|lx)==0) { /* return sign(x)*0 */ *quo = (sxy ? -q : q); return Zero[sx]; } while(hx<(1ULL<>MANL_SHIFT); lx = lx+lx; iy -= 1; } ux.bits.manh = hx; /* The integer bit is truncated here if needed. */ ux.bits.manl = lx; if (iy < LDBL_MIN_EXP) { ux.bits.exp = iy + (BIAS + 512); ux.e *= 0x1p-512; } else { ux.bits.exp = iy + BIAS; } ux.bits.sign = 0; x = ux.e; fixup: y = fabsl(y); if (y < LDBL_MIN * 2) { if (x+x>y || (x+x==y && (q & 1))) { q++; x-=y; } } else if (x>0.5*y || (x==0.5*y && (q & 1))) { q++; x-=y; } ux.e = x; ux.bits.sign ^= sx; x = ux.e; q &= 0x7fffffff; *quo = (sxy ? -q : q); return x; }