/* * Written by: * J.T. Conklin (jtc@netbsd.org) * Public domain. */ #include /* e^x = 2^(x * log2(e)) */ ENTRY(exp) /* * If x is +-Inf, then the subtraction would give Inf-Inf = NaN. * Avoid this. Also avoid it if x is NaN for convenience. */ movl 8(%esp),%eax andl $0x7fffffff,%eax cmpl $0x7ff00000,%eax jae x_Inf_or_NaN fldl 4(%esp) /* * Extended precision is needed to reduce the maximum error from * hundreds of ulps to less than 1 ulp. Switch to it if necessary. * We may as well set the rounding mode to to-nearest and mask traps * if we switch. */ fstcw 4(%esp) movl 4(%esp),%eax andl $0x0300,%eax cmpl $0x0300,%eax /* RC == 0 && PC == 3? */ je 1f /* jump if mode is good */ movl $0x137f,8(%esp) fldcw 8(%esp) 1: fldl2e fmulp /* x * log2(e) */ fst %st(1) frndint /* int(x * log2(e)) */ fst %st(2) fsubrp /* fract(x * log2(e)) */ f2xm1 /* 2^(fract(x * log2(e))) - 1 */ fld1 faddp /* 2^(fract(x * log2(e))) */ fscale /* e^x */ fstp %st(1) je 1f fldcw 4(%esp) 1: ret x_Inf_or_NaN: /* * Return 0 if x is -Inf. Otherwise just return x; when x is Inf * this gives Inf, and when x is a NaN this gives the same result * as (x + x) (x quieted). */ cmpl $0xfff00000,8(%esp) jne x_not_minus_Inf cmpl $0,4(%esp) jne x_not_minus_Inf fldz ret x_not_minus_Inf: fldl 4(%esp) ret END(exp) //