*DECK CAXPY SUBROUTINE CAXPY (N, CA, CX, INCX, CY, INCY) C***BEGIN PROLOGUE CAXPY C***PURPOSE Compute a constant times a vector plus a vector. C***LIBRARY SLATEC (BLAS) C***CATEGORY D1A7 C***TYPE COMPLEX (SAXPY-S, DAXPY-D, CAXPY-C) C***KEYWORDS BLAS, LINEAR ALGEBRA, TRIAD, VECTOR C***AUTHOR Lawson, C. L., (JPL) C Hanson, R. J., (SNLA) C Kincaid, D. R., (U. of Texas) C Krogh, F. T., (JPL) C***DESCRIPTION C C B L A S Subprogram C Description of Parameters C C --Input-- C N number of elements in input vector(s) C CA complex scalar multiplier C CX complex vector with N elements C INCX storage spacing between elements of CX C CY complex vector with N elements C INCY storage spacing between elements of CY C C --Output-- C CY complex result (unchanged if N .LE. 0) C C Overwrite complex CY with complex CA*CX + CY. C For I = 0 to N-1, replace CY(LY+I*INCY) with CA*CX(LX+I*INCX) + C CY(LY+I*INCY), C where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is C defined in a similar way using INCY. C C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. C Krogh, Basic linear algebra subprograms for Fortran C usage, Algorithm No. 539, Transactions on Mathematical C Software 5, 3 (September 1979), pp. 308-323. C***ROUTINES CALLED (NONE) C***REVISION HISTORY (YYMMDD) C 791001 DATE WRITTEN C 861211 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C 920310 Corrected definition of LX in DESCRIPTION. (WRB) C 920501 Reformatted the REFERENCES section. (WRB) C 920801 Removed variable CANORM. (RWC, WRB) C***END PROLOGUE CAXPY COMPLEX CX(*), CY(*), CA C***FIRST EXECUTABLE STATEMENT CAXPY IF (N.LE.0 .OR. CA.EQ.(0.0E0,0.0E0)) RETURN IF (INCX.EQ.INCY .AND. INCX.GT.0) GO TO 20 C C Code for unequal or nonpositive increments. C KX = 1 KY = 1 IF (INCX .LT. 0) KX = 1+(1-N)*INCX IF (INCY .LT. 0) KY = 1+(1-N)*INCY DO 10 I = 1,N CY(KY) = CY(KY) + CA*CX(KX) KX = KX + INCX KY = KY + INCY 10 CONTINUE RETURN C C Code for equal, positive, non-unit increments. C 20 NS = N*INCX DO 30 I = 1,NS,INCX CY(I) = CA*CX(I) + CY(I) 30 CONTINUE RETURN END