/* @(#)s_sincos.c 5.1 13/07/15 */ /* * ==================================================== * Copyright (C) 2013 Elliot Saba. All rights reserved. * * Developed at the University of Washington. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #include "cdefs-compat.h" /* sincos(x, s, c) * Several applications need sine and cosine of the same * angle x. This function computes both at the same time, * and stores the results in *sin and *cos. * * kernel function: * __kernel_sin ... sine function on [-pi/4,pi/4] * __kernel_cos ... cose function on [-pi/4,pi/4] * __ieee754_rem_pio2 ... argument reduction routine * * Method. * Borrow liberally from s_sin.c and s_cos.c, merging * efforts where applicable and returning their values in * appropriate variables, thereby slightly reducing the * amount of work relative to just calling sin/cos(x) * separately * * Special cases: * Let trig be any of sin, cos, or tan. * sincos(+-INF, s, c) is NaN, with signals; * sincos(NaN, s, c) is that NaN; */ #include #include "openlibm.h" //#define INLINE_REM_PIO2 #include "math_private.h" //#include "e_rem_pio2.c" /* Constants used in polynomial approximation of sin/cos */ static const double one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ S6 = 1.58969099521155010221e-10, /* 0x3DE5D93A, 0x5ACFD57C */ C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ DLLEXPORT void __kernel_sincos( double x, double y, int iy, double * k_s, double * k_c ) { /* Inline calculation of sin/cos, as we can save some work, and we will always need to calculate both values, no matter the result of switch */ double z, w, r, v, hz; z = x*x; w = z*z; /* cos-specific computation; equivalent to calling __kernel_cos(x,y) and storing in k_c*/ r = z*(C1+z*(C2+z*C3)) + w*w*(C4+z*(C5+z*C6)); hz = 0.5*z; v = one-hz; *k_c = v + (((one-v)-hz) + (z*r-x*y)); /* sin-specific computation; equivalent to calling __kernel_sin(x,y,1) and storing in k_s*/ r = S2+z*(S3+z*S4) + z*w*(S5+z*S6); v = z*x; if(iy == 0) *k_s = x+v*(S1+z*r); else *k_s = x-((z*(half*y-v*r)-y)-v*S1); } DLLEXPORT void sincos(double x, double * s, double * c) { double y[2]; int32_t ix; /* Store high word of x in ix */ GET_HIGH_WORD(ix,x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if(ix <= 0x3fe921fb) { /* Check for small x for sin and cos */ if(ix<0x3e46a09e) { /* Check for exact zero */ if( (int)x==0 ) { *s = x; *c = 1.0; return; } } /* Call kernel function with 0 extra */ __kernel_sincos(x,0.0,0, s, c); } else if( ix >= 0x7ff00000 ) { /* sincos(Inf or NaN) is NaN */ *s = x-x; *c = x-x; } /*argument reduction needed*/ else { double k_c, k_s; /* Calculate remainer, then sub out to kernel */ int32_t n = __ieee754_rem_pio2(x,y); __kernel_sincos( y[0], y[1], 1, &k_s, &k_c ); /* Figure out permutation of sin/cos outputs to true outputs */ switch(n&3) { case 0: *c = k_c; *s = k_s; break; case 1: *c = -k_s; *s = k_c; break; case 2: *c = -k_c; *s = -k_s; break; default: *c = k_s; *s = -k_c; break; } } } #if (LDBL_MANT_DIG == 53) __weak_reference(sincos, sincosl); #endif