*DECK ZUNK2 SUBROUTINE ZUNK2 (ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM, + ALIM) C***BEGIN PROLOGUE ZUNK2 C***SUBSIDIARY C***PURPOSE Subsidiary to ZBESK C***LIBRARY SLATEC C***TYPE ALL (CUNK2-A, ZUNK2-A) C***AUTHOR Amos, D. E., (SNL) C***DESCRIPTION C C ZUNK2 COMPUTES K(FNU,Z) AND ITS ANALYTIC CONTINUATION FROM THE C RIGHT HALF PLANE TO THE LEFT HALF PLANE BY MEANS OF THE C UNIFORM ASYMPTOTIC EXPANSIONS FOR H(KIND,FNU,ZN) AND J(FNU,ZN) C WHERE ZN IS IN THE RIGHT HALF PLANE, KIND=(3-MR)/2, MR=+1 OR C -1. HERE ZN=ZR*I OR -ZR*I WHERE ZR=Z IF Z IS IN THE RIGHT C HALF PLANE OR ZR=-Z IF Z IS IN THE LEFT HALF PLANE. MR INDIC- C ATES THE DIRECTION OF ROTATION FOR ANALYTIC CONTINUATION. C NZ=-1 MEANS AN OVERFLOW WILL OCCUR C C***SEE ALSO ZBESK C***ROUTINES CALLED D1MACH, ZABS, ZAIRY, ZS1S2, ZUCHK, ZUNHJ C***REVISION HISTORY (YYMMDD) C 830501 DATE WRITTEN C 910415 Prologue converted to Version 4.0 format. (BAB) C***END PROLOGUE ZUNK2 C COMPLEX AI,ARG,ARGD,ASUM,ASUMD,BSUM,BSUMD,CFN,CI,CIP,CK,CONE,CRSC, C *CR1,CR2,CS,CSCL,CSGN,CSPN,CSR,CSS,CY,CZERO,C1,C2,DAI,PHI,PHID,RZ, C *S1,S2,Y,Z,ZB,ZETA1,ZETA1D,ZETA2,ZETA2D,ZN,ZR DOUBLE PRECISION AARG, AIC, AII, AIR, ALIM, ANG, APHI, ARGDI, * ARGDR, ARGI, ARGR, ASC, ASCLE, ASUMDI, ASUMDR, ASUMI, ASUMR, * BRY, BSUMDI, BSUMDR, BSUMI, BSUMR, CAR, CIPI, CIPR, CKI, CKR, * CONER, CRSC, CR1I, CR1R, CR2I, CR2R, CSCL, CSGNI, CSI, * CSPNI, CSPNR, CSR, CSRR, CSSR, CYI, CYR, C1I, C1R, C2I, C2M, * C2R, DAII, DAIR, ELIM, FMR, FN, FNF, FNU, HPI, PHIDI, PHIDR, * PHII, PHIR, PI, PTI, PTR, RAST, RAZR, RS1, RZI, RZR, SAR, SGN, * STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, YY, ZBI, ZBR, ZEROI, * ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZET1DI, ZET1DR, ZET2DI, * ZET2DR, ZI, ZNI, ZNR, ZR, ZRI, ZRR, D1MACH, ZABS INTEGER I, IB, IFLAG, IFN, IL, IN, INU, IUF, K, KDFLG, KFLAG, KK, * KODE, MR, N, NAI, NDAI, NW, NZ, IDUM, J, IPARD, IC DIMENSION BRY(3), YR(N), YI(N), ASUMR(2), ASUMI(2), BSUMR(2), * BSUMI(2), PHIR(2), PHII(2), ARGR(2), ARGI(2), ZETA1R(2), * ZETA1I(2), ZETA2R(2), ZETA2I(2), CYR(2), CYI(2), CIPR(4), * CIPI(4), CSSR(3), CSRR(3) EXTERNAL ZABS DATA ZEROR,ZEROI,CONER,CR1R,CR1I,CR2R,CR2I / 1 0.0D0, 0.0D0, 1.0D0, 1 1.0D0,1.73205080756887729D0 , -0.5D0,-8.66025403784438647D-01 / DATA HPI, PI, AIC / 1 1.57079632679489662D+00, 3.14159265358979324D+00, 1 1.26551212348464539D+00/ DATA CIPR(1),CIPI(1),CIPR(2),CIPI(2),CIPR(3),CIPI(3),CIPR(4), * CIPI(4) / 1 1.0D0,0.0D0 , 0.0D0,-1.0D0 , -1.0D0,0.0D0 , 0.0D0,1.0D0 / C***FIRST EXECUTABLE STATEMENT ZUNK2 KDFLG = 1 NZ = 0 C----------------------------------------------------------------------- C EXP(-ALIM)=EXP(-ELIM)/TOL=APPROX. ONE PRECISION GREATER THAN C THE UNDERFLOW LIMIT C----------------------------------------------------------------------- CSCL = 1.0D0/TOL CRSC = TOL CSSR(1) = CSCL CSSR(2) = CONER CSSR(3) = CRSC CSRR(1) = CRSC CSRR(2) = CONER CSRR(3) = CSCL BRY(1) = 1.0D+3*D1MACH(1)/TOL BRY(2) = 1.0D0/BRY(1) BRY(3) = D1MACH(2) ZRR = ZR ZRI = ZI IF (ZR.GE.0.0D0) GO TO 10 ZRR = -ZR ZRI = -ZI 10 CONTINUE YY = ZRI ZNR = ZRI ZNI = -ZRR ZBR = ZRR ZBI = ZRI INU = FNU FNF = FNU - INU ANG = -HPI*FNF CAR = COS(ANG) SAR = SIN(ANG) C2R = HPI*SAR C2I = -HPI*CAR KK = MOD(INU,4) + 1 STR = C2R*CIPR(KK) - C2I*CIPI(KK) STI = C2R*CIPI(KK) + C2I*CIPR(KK) CSR = CR1R*STR - CR1I*STI CSI = CR1R*STI + CR1I*STR IF (YY.GT.0.0D0) GO TO 20 ZNR = -ZNR ZBI = -ZBI 20 CONTINUE C----------------------------------------------------------------------- C K(FNU,Z) IS COMPUTED FROM H(2,FNU,-I*Z) WHERE Z IS IN THE FIRST C QUADRANT. FOURTH QUADRANT VALUES (YY.LE.0.0E0) ARE COMPUTED BY C CONJUGATION SINCE THE K FUNCTION IS REAL ON THE POSITIVE REAL AXIS C----------------------------------------------------------------------- J = 2 DO 80 I=1,N C----------------------------------------------------------------------- C J FLIP FLOPS BETWEEN 1 AND 2 IN J = 3 - J C----------------------------------------------------------------------- J = 3 - J FN = FNU + (I-1) CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIR(J), PHII(J), ARGR(J), * ARGI(J), ZETA1R(J), ZETA1I(J), ZETA2R(J), ZETA2I(J), ASUMR(J), * ASUMI(J), BSUMR(J), BSUMI(J)) IF (KODE.EQ.1) GO TO 30 STR = ZBR + ZETA2R(J) STI = ZBI + ZETA2I(J) RAST = FN/ZABS(STR,STI) STR = STR*RAST*RAST STI = -STI*RAST*RAST S1R = ZETA1R(J) - STR S1I = ZETA1I(J) - STI GO TO 40 30 CONTINUE S1R = ZETA1R(J) - ZETA2R(J) S1I = ZETA1I(J) - ZETA2I(J) 40 CONTINUE C----------------------------------------------------------------------- C TEST FOR UNDERFLOW AND OVERFLOW C----------------------------------------------------------------------- RS1 = S1R IF (ABS(RS1).GT.ELIM) GO TO 70 IF (KDFLG.EQ.1) KFLAG = 2 IF (ABS(RS1).LT.ALIM) GO TO 50 C----------------------------------------------------------------------- C REFINE TEST AND SCALE C----------------------------------------------------------------------- APHI = ZABS(PHIR(J),PHII(J)) AARG = ZABS(ARGR(J),ARGI(J)) RS1 = RS1 + LOG(APHI) - 0.25D0*LOG(AARG) - AIC IF (ABS(RS1).GT.ELIM) GO TO 70 IF (KDFLG.EQ.1) KFLAG = 1 IF (RS1.LT.0.0D0) GO TO 50 IF (KDFLG.EQ.1) KFLAG = 3 50 CONTINUE C----------------------------------------------------------------------- C SCALE S1 TO KEEP INTERMEDIATE ARITHMETIC ON SCALE NEAR C EXPONENT EXTREMES C----------------------------------------------------------------------- C2R = ARGR(J)*CR2R - ARGI(J)*CR2I C2I = ARGR(J)*CR2I + ARGI(J)*CR2R CALL ZAIRY(C2R, C2I, 0, 2, AIR, AII, NAI, IDUM) CALL ZAIRY(C2R, C2I, 1, 2, DAIR, DAII, NDAI, IDUM) STR = DAIR*BSUMR(J) - DAII*BSUMI(J) STI = DAIR*BSUMI(J) + DAII*BSUMR(J) PTR = STR*CR2R - STI*CR2I PTI = STR*CR2I + STI*CR2R STR = PTR + (AIR*ASUMR(J)-AII*ASUMI(J)) STI = PTI + (AIR*ASUMI(J)+AII*ASUMR(J)) PTR = STR*PHIR(J) - STI*PHII(J) PTI = STR*PHII(J) + STI*PHIR(J) S2R = PTR*CSR - PTI*CSI S2I = PTR*CSI + PTI*CSR STR = EXP(S1R)*CSSR(KFLAG) S1R = STR*COS(S1I) S1I = STR*SIN(S1I) STR = S2R*S1R - S2I*S1I S2I = S1R*S2I + S2R*S1I S2R = STR IF (KFLAG.NE.1) GO TO 60 CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL) IF (NW.NE.0) GO TO 70 60 CONTINUE IF (YY.LE.0.0D0) S2I = -S2I CYR(KDFLG) = S2R CYI(KDFLG) = S2I YR(I) = S2R*CSRR(KFLAG) YI(I) = S2I*CSRR(KFLAG) STR = CSI CSI = -CSR CSR = STR IF (KDFLG.EQ.2) GO TO 85 KDFLG = 2 GO TO 80 70 CONTINUE IF (RS1.GT.0.0D0) GO TO 320 C----------------------------------------------------------------------- C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW C----------------------------------------------------------------------- IF (ZR.LT.0.0D0) GO TO 320 KDFLG = 1 YR(I)=ZEROR YI(I)=ZEROI NZ=NZ+1 STR = CSI CSI =-CSR CSR = STR IF (I.EQ.1) GO TO 80 IF ((YR(I-1).EQ.ZEROR).AND.(YI(I-1).EQ.ZEROI)) GO TO 80 YR(I-1)=ZEROR YI(I-1)=ZEROI NZ=NZ+1 80 CONTINUE I = N 85 CONTINUE RAZR = 1.0D0/ZABS(ZRR,ZRI) STR = ZRR*RAZR STI = -ZRI*RAZR RZR = (STR+STR)*RAZR RZI = (STI+STI)*RAZR CKR = FN*RZR CKI = FN*RZI IB = I + 1 IF (N.LT.IB) GO TO 180 C----------------------------------------------------------------------- C TEST LAST MEMBER FOR UNDERFLOW AND OVERFLOW. SET SEQUENCE TO ZERO C ON UNDERFLOW. C----------------------------------------------------------------------- FN = FNU + (N-1) IPARD = 1 IF (MR.NE.0) IPARD = 0 CALL ZUNHJ(ZNR, ZNI, FN, IPARD, TOL, PHIDR, PHIDI, ARGDR, ARGDI, * ZET1DR, ZET1DI, ZET2DR, ZET2DI, ASUMDR, ASUMDI, BSUMDR, BSUMDI) IF (KODE.EQ.1) GO TO 90 STR = ZBR + ZET2DR STI = ZBI + ZET2DI RAST = FN/ZABS(STR,STI) STR = STR*RAST*RAST STI = -STI*RAST*RAST S1R = ZET1DR - STR S1I = ZET1DI - STI GO TO 100 90 CONTINUE S1R = ZET1DR - ZET2DR S1I = ZET1DI - ZET2DI 100 CONTINUE RS1 = S1R IF (ABS(RS1).GT.ELIM) GO TO 105 IF (ABS(RS1).LT.ALIM) GO TO 120 C----------------------------------------------------------------------- C REFINE ESTIMATE AND TEST C----------------------------------------------------------------------- APHI = ZABS(PHIDR,PHIDI) RS1 = RS1+LOG(APHI) IF (ABS(RS1).LT.ELIM) GO TO 120 105 CONTINUE IF (RS1.GT.0.0D0) GO TO 320 C----------------------------------------------------------------------- C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW C----------------------------------------------------------------------- IF (ZR.LT.0.0D0) GO TO 320 NZ = N DO 106 I=1,N YR(I) = ZEROR YI(I) = ZEROI 106 CONTINUE RETURN 120 CONTINUE S1R = CYR(1) S1I = CYI(1) S2R = CYR(2) S2I = CYI(2) C1R = CSRR(KFLAG) ASCLE = BRY(KFLAG) DO 130 I=IB,N C2R = S2R C2I = S2I S2R = CKR*C2R - CKI*C2I + S1R S2I = CKR*C2I + CKI*C2R + S1I S1R = C2R S1I = C2I CKR = CKR + RZR CKI = CKI + RZI C2R = S2R*C1R C2I = S2I*C1R YR(I) = C2R YI(I) = C2I IF (KFLAG.GE.3) GO TO 130 STR = ABS(C2R) STI = ABS(C2I) C2M = MAX(STR,STI) IF (C2M.LE.ASCLE) GO TO 130 KFLAG = KFLAG + 1 ASCLE = BRY(KFLAG) S1R = S1R*C1R S1I = S1I*C1R S2R = C2R S2I = C2I S1R = S1R*CSSR(KFLAG) S1I = S1I*CSSR(KFLAG) S2R = S2R*CSSR(KFLAG) S2I = S2I*CSSR(KFLAG) C1R = CSRR(KFLAG) 130 CONTINUE 180 CONTINUE IF (MR.EQ.0) RETURN C----------------------------------------------------------------------- C ANALYTIC CONTINUATION FOR RE(Z).LT.0.0D0 C----------------------------------------------------------------------- NZ = 0 FMR = MR SGN = -DSIGN(PI,FMR) C----------------------------------------------------------------------- C CSPN AND CSGN ARE COEFF OF K AND I FUNCTIONS RESP. C----------------------------------------------------------------------- CSGNI = SGN IF (YY.LE.0.0D0) CSGNI = -CSGNI IFN = INU + N - 1 ANG = FNF*SGN CSPNR = COS(ANG) CSPNI = SIN(ANG) IF (MOD(IFN,2).EQ.0) GO TO 190 CSPNR = -CSPNR CSPNI = -CSPNI 190 CONTINUE C----------------------------------------------------------------------- C CS=COEFF OF THE J FUNCTION TO GET THE I FUNCTION. I(FNU,Z) IS C COMPUTED FROM EXP(I*FNU*HPI)*J(FNU,-I*Z) WHERE Z IS IN THE FIRST C QUADRANT. FOURTH QUADRANT VALUES (YY.LE.0.0E0) ARE COMPUTED BY C CONJUGATION SINCE THE I FUNCTION IS REAL ON THE POSITIVE REAL AXIS C----------------------------------------------------------------------- CSR = SAR*CSGNI CSI = CAR*CSGNI IN = MOD(IFN,4) + 1 C2R = CIPR(IN) C2I = CIPI(IN) STR = CSR*C2R + CSI*C2I CSI = -CSR*C2I + CSI*C2R CSR = STR ASC = BRY(1) IUF = 0 KK = N KDFLG = 1 IB = IB - 1 IC = IB - 1 DO 290 K=1,N FN = FNU + (KK-1) C----------------------------------------------------------------------- C LOGIC TO SORT OUT CASES WHOSE PARAMETERS WERE SET FOR THE K C FUNCTION ABOVE C----------------------------------------------------------------------- IF (N.GT.2) GO TO 175 172 CONTINUE PHIDR = PHIR(J) PHIDI = PHII(J) ARGDR = ARGR(J) ARGDI = ARGI(J) ZET1DR = ZETA1R(J) ZET1DI = ZETA1I(J) ZET2DR = ZETA2R(J) ZET2DI = ZETA2I(J) ASUMDR = ASUMR(J) ASUMDI = ASUMI(J) BSUMDR = BSUMR(J) BSUMDI = BSUMI(J) J = 3 - J GO TO 210 175 CONTINUE IF ((KK.EQ.N).AND.(IB.LT.N)) GO TO 210 IF ((KK.EQ.IB).OR.(KK.EQ.IC)) GO TO 172 CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIDR, PHIDI, ARGDR, * ARGDI, ZET1DR, ZET1DI, ZET2DR, ZET2DI, ASUMDR, * ASUMDI, BSUMDR, BSUMDI) 210 CONTINUE IF (KODE.EQ.1) GO TO 220 STR = ZBR + ZET2DR STI = ZBI + ZET2DI RAST = FN/ZABS(STR,STI) STR = STR*RAST*RAST STI = -STI*RAST*RAST S1R = -ZET1DR + STR S1I = -ZET1DI + STI GO TO 230 220 CONTINUE S1R = -ZET1DR + ZET2DR S1I = -ZET1DI + ZET2DI 230 CONTINUE C----------------------------------------------------------------------- C TEST FOR UNDERFLOW AND OVERFLOW C----------------------------------------------------------------------- RS1 = S1R IF (ABS(RS1).GT.ELIM) GO TO 280 IF (KDFLG.EQ.1) IFLAG = 2 IF (ABS(RS1).LT.ALIM) GO TO 240 C----------------------------------------------------------------------- C REFINE TEST AND SCALE C----------------------------------------------------------------------- APHI = ZABS(PHIDR,PHIDI) AARG = ZABS(ARGDR,ARGDI) RS1 = RS1 + LOG(APHI) - 0.25D0*LOG(AARG) - AIC IF (ABS(RS1).GT.ELIM) GO TO 280 IF (KDFLG.EQ.1) IFLAG = 1 IF (RS1.LT.0.0D0) GO TO 240 IF (KDFLG.EQ.1) IFLAG = 3 240 CONTINUE CALL ZAIRY(ARGDR, ARGDI, 0, 2, AIR, AII, NAI, IDUM) CALL ZAIRY(ARGDR, ARGDI, 1, 2, DAIR, DAII, NDAI, IDUM) STR = DAIR*BSUMDR - DAII*BSUMDI STI = DAIR*BSUMDI + DAII*BSUMDR STR = STR + (AIR*ASUMDR-AII*ASUMDI) STI = STI + (AIR*ASUMDI+AII*ASUMDR) PTR = STR*PHIDR - STI*PHIDI PTI = STR*PHIDI + STI*PHIDR S2R = PTR*CSR - PTI*CSI S2I = PTR*CSI + PTI*CSR STR = EXP(S1R)*CSSR(IFLAG) S1R = STR*COS(S1I) S1I = STR*SIN(S1I) STR = S2R*S1R - S2I*S1I S2I = S2R*S1I + S2I*S1R S2R = STR IF (IFLAG.NE.1) GO TO 250 CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL) IF (NW.EQ.0) GO TO 250 S2R = ZEROR S2I = ZEROI 250 CONTINUE IF (YY.LE.0.0D0) S2I = -S2I CYR(KDFLG) = S2R CYI(KDFLG) = S2I C2R = S2R C2I = S2I S2R = S2R*CSRR(IFLAG) S2I = S2I*CSRR(IFLAG) C----------------------------------------------------------------------- C ADD I AND K FUNCTIONS, K SEQUENCE IN Y(I), I=1,N C----------------------------------------------------------------------- S1R = YR(KK) S1I = YI(KK) IF (KODE.EQ.1) GO TO 270 CALL ZS1S2(ZRR, ZRI, S1R, S1I, S2R, S2I, NW, ASC, ALIM, IUF) NZ = NZ + NW 270 CONTINUE YR(KK) = S1R*CSPNR - S1I*CSPNI + S2R YI(KK) = S1R*CSPNI + S1I*CSPNR + S2I KK = KK - 1 CSPNR = -CSPNR CSPNI = -CSPNI STR = CSI CSI = -CSR CSR = STR IF (C2R.NE.0.0D0 .OR. C2I.NE.0.0D0) GO TO 255 KDFLG = 1 GO TO 290 255 CONTINUE IF (KDFLG.EQ.2) GO TO 295 KDFLG = 2 GO TO 290 280 CONTINUE IF (RS1.GT.0.0D0) GO TO 320 S2R = ZEROR S2I = ZEROI GO TO 250 290 CONTINUE K = N 295 CONTINUE IL = N - K IF (IL.EQ.0) RETURN C----------------------------------------------------------------------- C RECUR BACKWARD FOR REMAINDER OF I SEQUENCE AND ADD IN THE C K FUNCTIONS, SCALING THE I SEQUENCE DURING RECURRENCE TO KEEP C INTERMEDIATE ARITHMETIC ON SCALE NEAR EXPONENT EXTREMES. C----------------------------------------------------------------------- S1R = CYR(1) S1I = CYI(1) S2R = CYR(2) S2I = CYI(2) CSR = CSRR(IFLAG) ASCLE = BRY(IFLAG) FN = INU+IL DO 310 I=1,IL C2R = S2R C2I = S2I S2R = S1R + (FN+FNF)*(RZR*C2R-RZI*C2I) S2I = S1I + (FN+FNF)*(RZR*C2I+RZI*C2R) S1R = C2R S1I = C2I FN = FN - 1.0D0 C2R = S2R*CSR C2I = S2I*CSR CKR = C2R CKI = C2I C1R = YR(KK) C1I = YI(KK) IF (KODE.EQ.1) GO TO 300 CALL ZS1S2(ZRR, ZRI, C1R, C1I, C2R, C2I, NW, ASC, ALIM, IUF) NZ = NZ + NW 300 CONTINUE YR(KK) = C1R*CSPNR - C1I*CSPNI + C2R YI(KK) = C1R*CSPNI + C1I*CSPNR + C2I KK = KK - 1 CSPNR = -CSPNR CSPNI = -CSPNI IF (IFLAG.GE.3) GO TO 310 C2R = ABS(CKR) C2I = ABS(CKI) C2M = MAX(C2R,C2I) IF (C2M.LE.ASCLE) GO TO 310 IFLAG = IFLAG + 1 ASCLE = BRY(IFLAG) S1R = S1R*CSR S1I = S1I*CSR S2R = CKR S2I = CKI S1R = S1R*CSSR(IFLAG) S1I = S1I*CSSR(IFLAG) S2R = S2R*CSSR(IFLAG) S2I = S2I*CSSR(IFLAG) CSR = CSRR(IFLAG) 310 CONTINUE RETURN 320 CONTINUE NZ = -1 RETURN END