OpenLibm/ld80/e_tgammal.c
Viral B. Shah 9ecf223fc1 Get the ld80 routines from OpenBSD to build on mac and linux.
Bump version number and SO major version, since we have
introduced new long double APIs.
2014-12-04 23:56:11 +05:30

320 lines
6.6 KiB
C

/* $OpenBSD: e_tgammal.c,v 1.4 2013/11/12 20:35:19 martynas Exp $ */
/*
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* tgammal.c
*
* Gamma function
*
*
*
* SYNOPSIS:
*
* long double x, y, tgammal();
* extern int signgam;
*
* y = tgammal( x );
*
*
*
* DESCRIPTION:
*
* Returns gamma function of the argument. The result is
* correctly signed, and the sign (+1 or -1) is also
* returned in a global (extern) variable named signgam.
* This variable is also filled in by the logarithmic gamma
* function lgamma().
*
* Arguments |x| <= 13 are reduced by recurrence and the function
* approximated by a rational function of degree 7/8 in the
* interval (2,3). Large arguments are handled by Stirling's
* formula. Large negative arguments are made positive using
* a reflection formula.
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -40,+40 10000 3.6e-19 7.9e-20
* IEEE -1755,+1755 10000 4.8e-18 6.5e-19
*
* Accuracy for large arguments is dominated by error in powl().
*
*/
#include <float.h>
#include <openlibm.h>
#include "math_private.h"
extern int signgam;
/*
tgamma(x+2) = tgamma(x+2) P(x)/Q(x)
0 <= x <= 1
Relative error
n=7, d=8
Peak error = 1.83e-20
Relative error spread = 8.4e-23
*/
static long double P[8] = {
4.212760487471622013093E-5L,
4.542931960608009155600E-4L,
4.092666828394035500949E-3L,
2.385363243461108252554E-2L,
1.113062816019361559013E-1L,
3.629515436640239168939E-1L,
8.378004301573126728826E-1L,
1.000000000000000000009E0L,
};
static long double Q[9] = {
-1.397148517476170440917E-5L,
2.346584059160635244282E-4L,
-1.237799246653152231188E-3L,
-7.955933682494738320586E-4L,
2.773706565840072979165E-2L,
-4.633887671244534213831E-2L,
-2.243510905670329164562E-1L,
4.150160950588455434583E-1L,
9.999999999999999999908E-1L,
};
/*
static long double P[] = {
-3.01525602666895735709e0L,
-3.25157411956062339893e1L,
-2.92929976820724030353e2L,
-1.70730828800510297666e3L,
-7.96667499622741999770e3L,
-2.59780216007146401957e4L,
-5.99650230220855581642e4L,
-7.15743521530849602425e4L
};
static long double Q[] = {
1.00000000000000000000e0L,
-1.67955233807178858919e1L,
8.85946791747759881659e1L,
5.69440799097468430177e1L,
-1.98526250512761318471e3L,
3.31667508019495079814e3L,
1.60577839621734713377e4L,
-2.97045081369399940529e4L,
-7.15743521530849602412e4L
};
*/
#define MAXGAML 1755.455L
/*static const long double LOGPI = 1.14472988584940017414L;*/
/* Stirling's formula for the gamma function
tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
z(x) = x
13 <= x <= 1024
Relative error
n=8, d=0
Peak error = 9.44e-21
Relative error spread = 8.8e-4
*/
static long double STIR[9] = {
7.147391378143610789273E-4L,
-2.363848809501759061727E-5L,
-5.950237554056330156018E-4L,
6.989332260623193171870E-5L,
7.840334842744753003862E-4L,
-2.294719747873185405699E-4L,
-2.681327161876304418288E-3L,
3.472222222230075327854E-3L,
8.333333333333331800504E-2L,
};
#define MAXSTIR 1024.0L
static const long double SQTPI = 2.50662827463100050242E0L;
/* 1/tgamma(x) = z P(z)
* z(x) = 1/x
* 0 < x < 0.03125
* Peak relative error 4.2e-23
*/
static long double S[9] = {
-1.193945051381510095614E-3L,
7.220599478036909672331E-3L,
-9.622023360406271645744E-3L,
-4.219773360705915470089E-2L,
1.665386113720805206758E-1L,
-4.200263503403344054473E-2L,
-6.558780715202540684668E-1L,
5.772156649015328608253E-1L,
1.000000000000000000000E0L,
};
/* 1/tgamma(-x) = z P(z)
* z(x) = 1/x
* 0 < x < 0.03125
* Peak relative error 5.16e-23
* Relative error spread = 2.5e-24
*/
static long double SN[9] = {
1.133374167243894382010E-3L,
7.220837261893170325704E-3L,
9.621911155035976733706E-3L,
-4.219773343731191721664E-2L,
-1.665386113944413519335E-1L,
-4.200263503402112910504E-2L,
6.558780715202536547116E-1L,
5.772156649015328608727E-1L,
-1.000000000000000000000E0L,
};
static const long double PIL = 3.1415926535897932384626L;
static long double stirf ( long double );
/* Gamma function computed by Stirling's formula.
*/
static long double stirf(long double x)
{
long double y, w, v;
w = 1.0L/x;
/* For large x, use rational coefficients from the analytical expansion. */
if( x > 1024.0L )
w = (((((6.97281375836585777429E-5L * w
+ 7.84039221720066627474E-4L) * w
- 2.29472093621399176955E-4L) * w
- 2.68132716049382716049E-3L) * w
+ 3.47222222222222222222E-3L) * w
+ 8.33333333333333333333E-2L) * w
+ 1.0L;
else
w = 1.0L + w * __polevll( w, STIR, 8 );
y = expl(x);
if( x > MAXSTIR )
{ /* Avoid overflow in pow() */
v = powl( x, 0.5L * x - 0.25L );
y = v * (v / y);
}
else
{
y = powl( x, x - 0.5L ) / y;
}
y = SQTPI * y * w;
return( y );
}
long double
tgammal(long double x)
{
long double p, q, z;
int i;
signgam = 1;
if( isnan(x) )
return(NAN);
if(x == INFINITY)
return(INFINITY);
if(x == -INFINITY)
return(x - x);
if( x == 0.0L )
return( 1.0L / x );
q = fabsl(x);
if( q > 13.0L )
{
if( q > MAXGAML )
goto goverf;
if( x < 0.0L )
{
p = floorl(q);
if( p == q )
return (x - x) / (x - x);
i = p;
if( (i & 1) == 0 )
signgam = -1;
z = q - p;
if( z > 0.5L )
{
p += 1.0L;
z = q - p;
}
z = q * sinl( PIL * z );
z = fabsl(z) * stirf(q);
if( z <= PIL/LDBL_MAX )
{
goverf:
return( signgam * INFINITY);
}
z = PIL/z;
}
else
{
z = stirf(x);
}
return( signgam * z );
}
z = 1.0L;
while( x >= 3.0L )
{
x -= 1.0L;
z *= x;
}
while( x < -0.03125L )
{
z /= x;
x += 1.0L;
}
if( x <= 0.03125L )
goto small;
while( x < 2.0L )
{
z /= x;
x += 1.0L;
}
if( x == 2.0L )
return(z);
x -= 2.0L;
p = __polevll( x, P, 7 );
q = __polevll( x, Q, 8 );
z = z * p / q;
if( z < 0 )
signgam = -1;
return z;
small:
if( x == 0.0L )
return (x - x) / (x - x);
else
{
if( x < 0.0L )
{
x = -x;
q = z / (x * __polevll( x, SN, 8 ));
signgam = -1;
}
else
q = z / (x * __polevll( x, S, 8 ));
}
return q;
}