mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
462 lines
12 KiB
Fortran
462 lines
12 KiB
Fortran
*DECK BESI
|
|
SUBROUTINE BESI (X, ALPHA, KODE, N, Y, NZ)
|
|
C***BEGIN PROLOGUE BESI
|
|
C***PURPOSE Compute an N member sequence of I Bessel functions
|
|
C I/SUB(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
|
|
C EXP(-X)*I/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative
|
|
C ALPHA and X.
|
|
C***LIBRARY SLATEC
|
|
C***CATEGORY C10B3
|
|
C***TYPE SINGLE PRECISION (BESI-S, DBESI-D)
|
|
C***KEYWORDS I BESSEL FUNCTION, SPECIAL FUNCTIONS
|
|
C***AUTHOR Amos, D. E., (SNLA)
|
|
C Daniel, S. L., (SNLA)
|
|
C***DESCRIPTION
|
|
C
|
|
C Abstract
|
|
C BESI computes an N member sequence of I Bessel functions
|
|
C I/sub(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
|
|
C EXP(-X)*I/sub(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA
|
|
C and X. A combination of the power series, the asymptotic
|
|
C expansion for X to infinity, and the uniform asymptotic
|
|
C expansion for NU to infinity are applied over subdivisions of
|
|
C the (NU,X) plane. For values not covered by one of these
|
|
C formulae, the order is incremented by an integer so that one
|
|
C of these formulae apply. Backward recursion is used to reduce
|
|
C orders by integer values. The asymptotic expansion for X to
|
|
C infinity is used only when the entire sequence (specifically
|
|
C the last member) lies within the region covered by the
|
|
C expansion. Leading terms of these expansions are used to test
|
|
C for over or underflow where appropriate. If a sequence is
|
|
C requested and the last member would underflow, the result is
|
|
C set to zero and the next lower order tried, etc., until a
|
|
C member comes on scale or all are set to zero. An overflow
|
|
C cannot occur with scaling.
|
|
C
|
|
C Description of Arguments
|
|
C
|
|
C Input
|
|
C X - X .GE. 0.0E0
|
|
C ALPHA - order of first member of the sequence,
|
|
C ALPHA .GE. 0.0E0
|
|
C KODE - a parameter to indicate the scaling option
|
|
C KODE=1 returns
|
|
C Y(K)= I/sub(ALPHA+K-1)/(X),
|
|
C K=1,...,N
|
|
C KODE=2 returns
|
|
C Y(K)=EXP(-X)*I/sub(ALPHA+K-1)/(X),
|
|
C K=1,...,N
|
|
C N - number of members in the sequence, N .GE. 1
|
|
C
|
|
C Output
|
|
C Y - a vector whose first N components contain
|
|
C values for I/sub(ALPHA+K-1)/(X) or scaled
|
|
C values for EXP(-X)*I/sub(ALPHA+K-1)/(X),
|
|
C K=1,...,N depending on KODE
|
|
C NZ - number of components of Y set to zero due to
|
|
C underflow,
|
|
C NZ=0 , normal return, computation completed
|
|
C NZ .NE. 0, last NZ components of Y set to zero,
|
|
C Y(K)=0.0E0, K=N-NZ+1,...,N.
|
|
C
|
|
C Error Conditions
|
|
C Improper input arguments - a fatal error
|
|
C Overflow with KODE=1 - a fatal error
|
|
C Underflow - a non-fatal error (NZ .NE. 0)
|
|
C
|
|
C***REFERENCES D. E. Amos, S. L. Daniel and M. K. Weston, CDC 6600
|
|
C subroutines IBESS and JBESS for Bessel functions
|
|
C I(NU,X) and J(NU,X), X .GE. 0, NU .GE. 0, ACM
|
|
C Transactions on Mathematical Software 3, (1977),
|
|
C pp. 76-92.
|
|
C F. W. J. Olver, Tables of Bessel Functions of Moderate
|
|
C or Large Orders, NPL Mathematical Tables 6, Her
|
|
C Majesty's Stationery Office, London, 1962.
|
|
C***ROUTINES CALLED ALNGAM, ASYIK, I1MACH, R1MACH, XERMSG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 750101 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890531 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
|
C (WRB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE BESI
|
|
C
|
|
INTEGER I, IALP, IN, INLIM, IS, I1, K, KK, KM, KODE, KT,
|
|
1 N, NN, NS, NZ
|
|
INTEGER I1MACH
|
|
REAL AIN, AK, AKM, ALPHA, ANS, AP, ARG, ATOL, TOLLN, DFN,
|
|
1 DTM, DX, EARG, ELIM, ETX, FLGIK,FN, FNF, FNI,FNP1,FNU,GLN,RA,
|
|
2 RTTPI, S, SX, SXO2, S1, S2, T, TA, TB, TEMP, TFN, TM, TOL,
|
|
3 TRX, T2, X, XO2, XO2L, Y, Z
|
|
REAL R1MACH, ALNGAM
|
|
DIMENSION Y(*), TEMP(3)
|
|
SAVE RTTPI, INLIM
|
|
DATA RTTPI / 3.98942280401433E-01/
|
|
DATA INLIM / 80 /
|
|
C***FIRST EXECUTABLE STATEMENT BESI
|
|
NZ = 0
|
|
KT = 1
|
|
C I1MACH(15) REPLACES I1MACH(12) IN A DOUBLE PRECISION CODE
|
|
C I1MACH(14) REPLACES I1MACH(11) IN A DOUBLE PRECISION CODE
|
|
RA = R1MACH(3)
|
|
TOL = MAX(RA,1.0E-15)
|
|
I1 = -I1MACH(12)
|
|
GLN = R1MACH(5)
|
|
ELIM = 2.303E0*(I1*GLN-3.0E0)
|
|
C TOLLN = -LN(TOL)
|
|
I1 = I1MACH(11)+1
|
|
TOLLN = 2.303E0*GLN*I1
|
|
TOLLN = MIN(TOLLN,34.5388E0)
|
|
IF (N-1) 590, 10, 20
|
|
10 KT = 2
|
|
20 NN = N
|
|
IF (KODE.LT.1 .OR. KODE.GT.2) GO TO 570
|
|
IF (X) 600, 30, 80
|
|
30 IF (ALPHA) 580, 40, 50
|
|
40 Y(1) = 1.0E0
|
|
IF (N.EQ.1) RETURN
|
|
I1 = 2
|
|
GO TO 60
|
|
50 I1 = 1
|
|
60 DO 70 I=I1,N
|
|
Y(I) = 0.0E0
|
|
70 CONTINUE
|
|
RETURN
|
|
80 CONTINUE
|
|
IF (ALPHA.LT.0.0E0) GO TO 580
|
|
C
|
|
IALP = INT(ALPHA)
|
|
FNI = IALP + N - 1
|
|
FNF = ALPHA - IALP
|
|
DFN = FNI + FNF
|
|
FNU = DFN
|
|
IN = 0
|
|
XO2 = X*0.5E0
|
|
SXO2 = XO2*XO2
|
|
ETX = KODE - 1
|
|
SX = ETX*X
|
|
C
|
|
C DECISION TREE FOR REGION WHERE SERIES, ASYMPTOTIC EXPANSION FOR X
|
|
C TO INFINITY AND ASYMPTOTIC EXPANSION FOR NU TO INFINITY ARE
|
|
C APPLIED.
|
|
C
|
|
IF (SXO2.LE.(FNU+1.0E0)) GO TO 90
|
|
IF (X.LE.12.0E0) GO TO 110
|
|
FN = 0.55E0*FNU*FNU
|
|
FN = MAX(17.0E0,FN)
|
|
IF (X.GE.FN) GO TO 430
|
|
ANS = MAX(36.0E0-FNU,0.0E0)
|
|
NS = INT(ANS)
|
|
FNI = FNI + NS
|
|
DFN = FNI + FNF
|
|
FN = DFN
|
|
IS = KT
|
|
KM = N - 1 + NS
|
|
IF (KM.GT.0) IS = 3
|
|
GO TO 120
|
|
90 FN = FNU
|
|
FNP1 = FN + 1.0E0
|
|
XO2L = LOG(XO2)
|
|
IS = KT
|
|
IF (X.LE.0.5E0) GO TO 230
|
|
NS = 0
|
|
100 FNI = FNI + NS
|
|
DFN = FNI + FNF
|
|
FN = DFN
|
|
FNP1 = FN + 1.0E0
|
|
IS = KT
|
|
IF (N-1+NS.GT.0) IS = 3
|
|
GO TO 230
|
|
110 XO2L = LOG(XO2)
|
|
NS = INT(SXO2-FNU)
|
|
GO TO 100
|
|
120 CONTINUE
|
|
C
|
|
C OVERFLOW TEST ON UNIFORM ASYMPTOTIC EXPANSION
|
|
C
|
|
IF (KODE.EQ.2) GO TO 130
|
|
IF (ALPHA.LT.1.0E0) GO TO 150
|
|
Z = X/ALPHA
|
|
RA = SQRT(1.0E0+Z*Z)
|
|
GLN = LOG((1.0E0+RA)/Z)
|
|
T = RA*(1.0E0-ETX) + ETX/(Z+RA)
|
|
ARG = ALPHA*(T-GLN)
|
|
IF (ARG.GT.ELIM) GO TO 610
|
|
IF (KM.EQ.0) GO TO 140
|
|
130 CONTINUE
|
|
C
|
|
C UNDERFLOW TEST ON UNIFORM ASYMPTOTIC EXPANSION
|
|
C
|
|
Z = X/FN
|
|
RA = SQRT(1.0E0+Z*Z)
|
|
GLN = LOG((1.0E0+RA)/Z)
|
|
T = RA*(1.0E0-ETX) + ETX/(Z+RA)
|
|
ARG = FN*(T-GLN)
|
|
140 IF (ARG.LT.(-ELIM)) GO TO 280
|
|
GO TO 190
|
|
150 IF (X.GT.ELIM) GO TO 610
|
|
GO TO 130
|
|
C
|
|
C UNIFORM ASYMPTOTIC EXPANSION FOR NU TO INFINITY
|
|
C
|
|
160 IF (KM.NE.0) GO TO 170
|
|
Y(1) = TEMP(3)
|
|
RETURN
|
|
170 TEMP(1) = TEMP(3)
|
|
IN = NS
|
|
KT = 1
|
|
I1 = 0
|
|
180 CONTINUE
|
|
IS = 2
|
|
FNI = FNI - 1.0E0
|
|
DFN = FNI + FNF
|
|
FN = DFN
|
|
IF(I1.EQ.2) GO TO 350
|
|
Z = X/FN
|
|
RA = SQRT(1.0E0+Z*Z)
|
|
GLN = LOG((1.0E0+RA)/Z)
|
|
T = RA*(1.0E0-ETX) + ETX/(Z+RA)
|
|
ARG = FN*(T-GLN)
|
|
190 CONTINUE
|
|
I1 = ABS(3-IS)
|
|
I1 = MAX(I1,1)
|
|
FLGIK = 1.0E0
|
|
CALL ASYIK(X,FN,KODE,FLGIK,RA,ARG,I1,TEMP(IS))
|
|
GO TO (180, 350, 510), IS
|
|
C
|
|
C SERIES FOR (X/2)**2.LE.NU+1
|
|
C
|
|
230 CONTINUE
|
|
GLN = ALNGAM(FNP1)
|
|
ARG = FN*XO2L - GLN - SX
|
|
IF (ARG.LT.(-ELIM)) GO TO 300
|
|
EARG = EXP(ARG)
|
|
240 CONTINUE
|
|
S = 1.0E0
|
|
IF (X.LT.TOL) GO TO 260
|
|
AK = 3.0E0
|
|
T2 = 1.0E0
|
|
T = 1.0E0
|
|
S1 = FN
|
|
DO 250 K=1,17
|
|
S2 = T2 + S1
|
|
T = T*SXO2/S2
|
|
S = S + T
|
|
IF (ABS(T).LT.TOL) GO TO 260
|
|
T2 = T2 + AK
|
|
AK = AK + 2.0E0
|
|
S1 = S1 + FN
|
|
250 CONTINUE
|
|
260 CONTINUE
|
|
TEMP(IS) = S*EARG
|
|
GO TO (270, 350, 500), IS
|
|
270 EARG = EARG*FN/XO2
|
|
FNI = FNI - 1.0E0
|
|
DFN = FNI + FNF
|
|
FN = DFN
|
|
IS = 2
|
|
GO TO 240
|
|
C
|
|
C SET UNDERFLOW VALUE AND UPDATE PARAMETERS
|
|
C
|
|
280 Y(NN) = 0.0E0
|
|
NN = NN - 1
|
|
FNI = FNI - 1.0E0
|
|
DFN = FNI + FNF
|
|
FN = DFN
|
|
IF (NN-1) 340, 290, 130
|
|
290 KT = 2
|
|
IS = 2
|
|
GO TO 130
|
|
300 Y(NN) = 0.0E0
|
|
NN = NN - 1
|
|
FNP1 = FN
|
|
FNI = FNI - 1.0E0
|
|
DFN = FNI + FNF
|
|
FN = DFN
|
|
IF (NN-1) 340, 310, 320
|
|
310 KT = 2
|
|
IS = 2
|
|
320 IF (SXO2.LE.FNP1) GO TO 330
|
|
GO TO 130
|
|
330 ARG = ARG - XO2L + LOG(FNP1)
|
|
IF (ARG.LT.(-ELIM)) GO TO 300
|
|
GO TO 230
|
|
340 NZ = N - NN
|
|
RETURN
|
|
C
|
|
C BACKWARD RECURSION SECTION
|
|
C
|
|
350 CONTINUE
|
|
NZ = N - NN
|
|
360 CONTINUE
|
|
IF(KT.EQ.2) GO TO 420
|
|
S1 = TEMP(1)
|
|
S2 = TEMP(2)
|
|
TRX = 2.0E0/X
|
|
DTM = FNI
|
|
TM = (DTM+FNF)*TRX
|
|
IF (IN.EQ.0) GO TO 390
|
|
C BACKWARD RECUR TO INDEX ALPHA+NN-1
|
|
DO 380 I=1,IN
|
|
S = S2
|
|
S2 = TM*S2 + S1
|
|
S1 = S
|
|
DTM = DTM - 1.0E0
|
|
TM = (DTM+FNF)*TRX
|
|
380 CONTINUE
|
|
Y(NN) = S1
|
|
IF (NN.EQ.1) RETURN
|
|
Y(NN-1) = S2
|
|
IF (NN.EQ.2) RETURN
|
|
GO TO 400
|
|
390 CONTINUE
|
|
C BACKWARD RECUR FROM INDEX ALPHA+NN-1 TO ALPHA
|
|
Y(NN) = S1
|
|
Y(NN-1) = S2
|
|
IF (NN.EQ.2) RETURN
|
|
400 K = NN + 1
|
|
DO 410 I=3,NN
|
|
K = K - 1
|
|
Y(K-2) = TM*Y(K-1) + Y(K)
|
|
DTM = DTM - 1.0E0
|
|
TM = (DTM+FNF)*TRX
|
|
410 CONTINUE
|
|
RETURN
|
|
420 Y(1) = TEMP(2)
|
|
RETURN
|
|
C
|
|
C ASYMPTOTIC EXPANSION FOR X TO INFINITY
|
|
C
|
|
430 CONTINUE
|
|
EARG = RTTPI/SQRT(X)
|
|
IF (KODE.EQ.2) GO TO 440
|
|
IF (X.GT.ELIM) GO TO 610
|
|
EARG = EARG*EXP(X)
|
|
440 ETX = 8.0E0*X
|
|
IS = KT
|
|
IN = 0
|
|
FN = FNU
|
|
450 DX = FNI + FNI
|
|
TM = 0.0E0
|
|
IF (FNI.EQ.0.0E0 .AND. ABS(FNF).LT.TOL) GO TO 460
|
|
TM = 4.0E0*FNF*(FNI+FNI+FNF)
|
|
460 CONTINUE
|
|
DTM = DX*DX
|
|
S1 = ETX
|
|
TRX = DTM - 1.0E0
|
|
DX = -(TRX+TM)/ETX
|
|
T = DX
|
|
S = 1.0E0 + DX
|
|
ATOL = TOL*ABS(S)
|
|
S2 = 1.0E0
|
|
AK = 8.0E0
|
|
DO 470 K=1,25
|
|
S1 = S1 + ETX
|
|
S2 = S2 + AK
|
|
DX = DTM - S2
|
|
AP = DX + TM
|
|
T = -T*AP/S1
|
|
S = S + T
|
|
IF (ABS(T).LE.ATOL) GO TO 480
|
|
AK = AK + 8.0E0
|
|
470 CONTINUE
|
|
480 TEMP(IS) = S*EARG
|
|
IF(IS.EQ.2) GO TO 360
|
|
IS = 2
|
|
FNI = FNI - 1.0E0
|
|
DFN = FNI + FNF
|
|
FN = DFN
|
|
GO TO 450
|
|
C
|
|
C BACKWARD RECURSION WITH NORMALIZATION BY
|
|
C ASYMPTOTIC EXPANSION FOR NU TO INFINITY OR POWER SERIES.
|
|
C
|
|
500 CONTINUE
|
|
C COMPUTATION OF LAST ORDER FOR SERIES NORMALIZATION
|
|
AKM = MAX(3.0E0-FN,0.0E0)
|
|
KM = INT(AKM)
|
|
TFN = FN + KM
|
|
TA = (GLN+TFN-0.9189385332E0-0.0833333333E0/TFN)/(TFN+0.5E0)
|
|
TA = XO2L - TA
|
|
TB = -(1.0E0-1.0E0/TFN)/TFN
|
|
AIN = TOLLN/(-TA+SQRT(TA*TA-TOLLN*TB)) + 1.5E0
|
|
IN = INT(AIN)
|
|
IN = IN + KM
|
|
GO TO 520
|
|
510 CONTINUE
|
|
C COMPUTATION OF LAST ORDER FOR ASYMPTOTIC EXPANSION NORMALIZATION
|
|
T = 1.0E0/(FN*RA)
|
|
AIN = TOLLN/(GLN+SQRT(GLN*GLN+T*TOLLN)) + 1.5E0
|
|
IN = INT(AIN)
|
|
IF (IN.GT.INLIM) GO TO 160
|
|
520 CONTINUE
|
|
TRX = 2.0E0/X
|
|
DTM = FNI + IN
|
|
TM = (DTM+FNF)*TRX
|
|
TA = 0.0E0
|
|
TB = TOL
|
|
KK = 1
|
|
530 CONTINUE
|
|
C
|
|
C BACKWARD RECUR UNINDEXED
|
|
C
|
|
DO 540 I=1,IN
|
|
S = TB
|
|
TB = TM*TB + TA
|
|
TA = S
|
|
DTM = DTM - 1.0E0
|
|
TM = (DTM+FNF)*TRX
|
|
540 CONTINUE
|
|
C NORMALIZATION
|
|
IF (KK.NE.1) GO TO 550
|
|
TA = (TA/TB)*TEMP(3)
|
|
TB = TEMP(3)
|
|
KK = 2
|
|
IN = NS
|
|
IF (NS.NE.0) GO TO 530
|
|
550 Y(NN) = TB
|
|
NZ = N - NN
|
|
IF (NN.EQ.1) RETURN
|
|
TB = TM*TB + TA
|
|
K = NN - 1
|
|
Y(K) = TB
|
|
IF (NN.EQ.2) RETURN
|
|
DTM = DTM - 1.0E0
|
|
TM = (DTM+FNF)*TRX
|
|
KM = K - 1
|
|
C
|
|
C BACKWARD RECUR INDEXED
|
|
C
|
|
DO 560 I=1,KM
|
|
Y(K-1) = TM*Y(K) + Y(K+1)
|
|
DTM = DTM - 1.0E0
|
|
TM = (DTM+FNF)*TRX
|
|
K = K - 1
|
|
560 CONTINUE
|
|
RETURN
|
|
C
|
|
C
|
|
C
|
|
570 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'BESI',
|
|
+ 'SCALING OPTION, KODE, NOT 1 OR 2.', 2, 1)
|
|
RETURN
|
|
580 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'BESI', 'ORDER, ALPHA, LESS THAN ZERO.',
|
|
+ 2, 1)
|
|
RETURN
|
|
590 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'BESI', 'N LESS THAN ONE.', 2, 1)
|
|
RETURN
|
|
600 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'BESI', 'X LESS THAN ZERO.', 2, 1)
|
|
RETURN
|
|
610 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'BESI',
|
|
+ 'OVERFLOW, X TOO LARGE FOR KODE = 1.', 6, 1)
|
|
RETURN
|
|
END
|