mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
138 lines
4.9 KiB
Fortran
138 lines
4.9 KiB
Fortran
*DECK BSPEV
|
|
SUBROUTINE BSPEV (T, AD, N, K, NDERIV, X, INEV, SVALUE, WORK)
|
|
C***BEGIN PROLOGUE BSPEV
|
|
C***PURPOSE Calculate the value of the spline and its derivatives from
|
|
C the B-representation.
|
|
C***LIBRARY SLATEC
|
|
C***CATEGORY E3, K6
|
|
C***TYPE SINGLE PRECISION (BSPEV-S, DBSPEV-D)
|
|
C***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION, SPLINES
|
|
C***AUTHOR Amos, D. E., (SNLA)
|
|
C***DESCRIPTION
|
|
C
|
|
C Written by Carl de Boor and modified by D. E. Amos
|
|
C
|
|
C Abstract
|
|
C BSPEV is the BSPLEV routine of the reference.
|
|
C
|
|
C BSPEV calculates the value of the spline and its derivatives
|
|
C at X from the B-representation (T,A,N,K) and returns them
|
|
C in SVALUE(I),I=1,NDERIV, T(K) .LE. X .LE. T(N+1). AD(I) can
|
|
C be the B-spline coefficients A(I), I=1,N if NDERIV=1. Other-
|
|
C wise AD must be computed before hand by a call to BSPDR (T,A,
|
|
C N,K,NDERIV,AD). If X=T(I),I=K,N, right limiting values are
|
|
C obtained.
|
|
C
|
|
C To compute left derivatives or left limiting values at a
|
|
C knot T(I), replace N by I-1 and set X=T(I), I=K+1,N+1.
|
|
C
|
|
C BSPEV calls INTRV, BSPVN
|
|
C
|
|
C Description of Arguments
|
|
C Input
|
|
C T - knot vector of length N+K
|
|
C AD - vector of length (2*N-NDERIV+1)*NDERIV/2 containing
|
|
C the difference table from BSPDR.
|
|
C N - number of B-spline coefficients
|
|
C N = sum of knot multiplicities-K
|
|
C K - order of the B-spline, K .GE. 1
|
|
C NDERIV - number of derivatives, 1 .LE. NDERIV .LE. K.
|
|
C NDERIV=1 gives the zero-th derivative = function
|
|
C value
|
|
C X - argument, T(K) .LE. X .LE. T(N+1)
|
|
C INEV - an initialization parameter which must be set
|
|
C to 1 the first time BSPEV is called.
|
|
C
|
|
C Output
|
|
C INEV - INEV contains information for efficient process-
|
|
C ing after the initial call and INEV must not
|
|
C be changed by the user. Distinct splines require
|
|
C distinct INEV parameters.
|
|
C SVALUE - vector of length NDERIV containing the spline
|
|
C value in SVALUE(1) and the NDERIV-1 derivatives
|
|
C in the remaining components.
|
|
C WORK - work vector of length 3*K
|
|
C
|
|
C Error Conditions
|
|
C Improper input is a fatal error.
|
|
C
|
|
C***REFERENCES Carl de Boor, Package for calculating with B-splines,
|
|
C SIAM Journal on Numerical Analysis 14, 3 (June 1977),
|
|
C pp. 441-472.
|
|
C***ROUTINES CALLED BSPVN, INTRV, XERMSG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 800901 DATE WRITTEN
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
|
C (WRB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE BSPEV
|
|
C
|
|
INTEGER I,ID,INEV,IWORK,JJ,K,KP1,KP1MN,L,LEFT,LL,MFLAG,
|
|
1 N, NDERIV
|
|
REAL AD, SVALUE, SUM, T, WORK, X
|
|
C DIMENSION T(N+K)
|
|
DIMENSION T(*), AD(*), SVALUE(*), WORK(*)
|
|
C***FIRST EXECUTABLE STATEMENT BSPEV
|
|
IF(K.LT.1) GO TO 100
|
|
IF(N.LT.K) GO TO 105
|
|
IF(NDERIV.LT.1 .OR. NDERIV.GT.K) GO TO 115
|
|
ID = NDERIV
|
|
CALL INTRV(T, N+1, X, INEV, I, MFLAG)
|
|
IF (X.LT.T(K)) GO TO 110
|
|
IF (MFLAG.EQ.0) GO TO 30
|
|
IF (X.GT.T(I)) GO TO 110
|
|
20 IF (I.EQ.K) GO TO 120
|
|
I = I - 1
|
|
IF (X.EQ.T(I)) GO TO 20
|
|
C
|
|
C *I* HAS BEEN FOUND IN (K,N) SO THAT T(I) .LE. X .LT. T(I+1)
|
|
C (OR .LE. T(I+1), IF T(I) .LT. T(I+1) = T(N+1) ).
|
|
30 KP1MN = K + 1 - ID
|
|
KP1 = K + 1
|
|
CALL BSPVN(T, KP1MN, K, 1, X, I, WORK(1),WORK(KP1),IWORK)
|
|
JJ = (N+N-ID+2)*(ID-1)/2
|
|
C ADIF(LEFTPL,ID) = AD(LEFTPL-ID+1 + (2*N-ID+2)*(ID-1)/2)
|
|
C LEFTPL = LEFT + L
|
|
40 LEFT = I - KP1MN
|
|
SUM = 0.0E0
|
|
LL = LEFT + JJ + 2 - ID
|
|
DO 50 L=1,KP1MN
|
|
SUM = SUM + WORK(L)*AD(LL)
|
|
LL = LL + 1
|
|
50 CONTINUE
|
|
SVALUE(ID) = SUM
|
|
ID = ID - 1
|
|
IF (ID.EQ.0) GO TO 60
|
|
JJ = JJ-(N-ID+1)
|
|
KP1MN = KP1MN + 1
|
|
CALL BSPVN(T, KP1MN, K, 2, X, I, WORK(1), WORK(KP1),IWORK)
|
|
GO TO 40
|
|
C
|
|
60 RETURN
|
|
C
|
|
C
|
|
100 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'BSPEV', 'K DOES NOT SATISFY K.GE.1', 2,
|
|
+ 1)
|
|
RETURN
|
|
105 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'BSPEV', 'N DOES NOT SATISFY N.GE.K', 2,
|
|
+ 1)
|
|
RETURN
|
|
110 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'BSPEV', 'X IS NOT IN T(K).LE.X.LE.T(N+1)'
|
|
+ , 2, 1)
|
|
RETURN
|
|
115 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'BSPEV',
|
|
+ 'NDERIV DOES NOT SATISFY 1.LE.NDERIV.LE.K', 2, 1)
|
|
RETURN
|
|
120 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'BSPEV',
|
|
+ 'A LEFT LIMITING VALUE CANNOT BE OBTAINED AT T(K)', 2, 1)
|
|
RETURN
|
|
END
|