mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
163 lines
5.6 KiB
Fortran
163 lines
5.6 KiB
Fortran
*DECK BSPVD
|
|
SUBROUTINE BSPVD (T, K, NDERIV, X, ILEFT, LDVNIK, VNIKX, WORK)
|
|
C***BEGIN PROLOGUE BSPVD
|
|
C***PURPOSE Calculate the value and all derivatives of order less than
|
|
C NDERIV of all basis functions which do not vanish at X.
|
|
C***LIBRARY SLATEC
|
|
C***CATEGORY E3, K6
|
|
C***TYPE SINGLE PRECISION (BSPVD-S, DBSPVD-D)
|
|
C***KEYWORDS DIFFERENTIATION OF B-SPLINE, EVALUATION OF B-SPLINE
|
|
C***AUTHOR Amos, D. E., (SNLA)
|
|
C***DESCRIPTION
|
|
C
|
|
C Written by Carl de Boor and modified by D. E. Amos
|
|
C
|
|
C Abstract
|
|
C BSPVD is the BSPLVD routine of the reference.
|
|
C
|
|
C BSPVD calculates the value and all derivatives of order
|
|
C less than NDERIV of all basis functions which do not
|
|
C (possibly) vanish at X. ILEFT is input such that
|
|
C T(ILEFT) .LE. X .LT. T(ILEFT+1). A call to INTRV(T,N+1,X,
|
|
C ILO,ILEFT,MFLAG) will produce the proper ILEFT. The output of
|
|
C BSPVD is a matrix VNIKX(I,J) of dimension at least (K,NDERIV)
|
|
C whose columns contain the K nonzero basis functions and
|
|
C their NDERIV-1 right derivatives at X, I=1,K, J=1,NDERIV.
|
|
C These basis functions have indices ILEFT-K+I, I=1,K,
|
|
C K .LE. ILEFT .LE. N. The nonzero part of the I-th basis
|
|
C function lies in (T(I),T(I+K)), I=1,N.
|
|
C
|
|
C If X=T(ILEFT+1) then VNIKX contains left limiting values
|
|
C (left derivatives) at T(ILEFT+1). In particular, ILEFT = N
|
|
C produces left limiting values at the right end point
|
|
C X=T(N+1). To obtain left limiting values at T(I), I=K+1,N+1,
|
|
C set X= next lower distinct knot, call INTRV to get ILEFT,
|
|
C set X=T(I), and then call BSPVD.
|
|
C
|
|
C Description of Arguments
|
|
C Input
|
|
C T - knot vector of length N+K, where
|
|
C N = number of B-spline basis functions
|
|
C N = sum of knot multiplicities-K
|
|
C K - order of the B-spline, K .GE. 1
|
|
C NDERIV - number of derivatives = NDERIV-1,
|
|
C 1 .LE. NDERIV .LE. K
|
|
C X - argument of basis functions,
|
|
C T(K) .LE. X .LE. T(N+1)
|
|
C ILEFT - largest integer such that
|
|
C T(ILEFT) .LE. X .LT. T(ILEFT+1)
|
|
C LDVNIK - leading dimension of matrix VNIKX
|
|
C
|
|
C Output
|
|
C VNIKX - matrix of dimension at least (K,NDERIV) contain-
|
|
C ing the nonzero basis functions at X and their
|
|
C derivatives columnwise.
|
|
C WORK - a work vector of length (K+1)*(K+2)/2
|
|
C
|
|
C Error Conditions
|
|
C Improper input is a fatal error
|
|
C
|
|
C***REFERENCES Carl de Boor, Package for calculating with B-splines,
|
|
C SIAM Journal on Numerical Analysis 14, 3 (June 1977),
|
|
C pp. 441-472.
|
|
C***ROUTINES CALLED BSPVN, XERMSG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 800901 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
|
C (WRB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE BSPVD
|
|
C
|
|
INTEGER I,IDERIV,ILEFT,IPKMD,J,JJ,JLOW,JM,JP1MID,K,KMD, KP1, L,
|
|
1 LDUMMY, M, MHIGH, NDERIV
|
|
REAL FACTOR, FKMD, T, V, VNIKX, WORK, X
|
|
C DIMENSION T(ILEFT+K), WORK((K+1)*(K+2)/2)
|
|
C A(I,J) = WORK(I+J*(J+1)/2), I=1,J+1 J=1,K-1
|
|
C A(I,K) = W0RK(I+K*(K-1)/2) I=1.K
|
|
C WORK(1) AND WORK((K+1)*(K+2)/2) ARE NOT USED.
|
|
DIMENSION T(*), VNIKX(LDVNIK,*), WORK(*)
|
|
C***FIRST EXECUTABLE STATEMENT BSPVD
|
|
IF(K.LT.1) GO TO 200
|
|
IF(NDERIV.LT.1 .OR. NDERIV.GT.K) GO TO 205
|
|
IF(LDVNIK.LT.K) GO TO 210
|
|
IDERIV = NDERIV
|
|
KP1 = K + 1
|
|
JJ = KP1 - IDERIV
|
|
CALL BSPVN(T, JJ, K, 1, X, ILEFT, VNIKX, WORK, IWORK)
|
|
IF (IDERIV.EQ.1) GO TO 100
|
|
MHIGH = IDERIV
|
|
DO 20 M=2,MHIGH
|
|
JP1MID = 1
|
|
DO 10 J=IDERIV,K
|
|
VNIKX(J,IDERIV) = VNIKX(JP1MID,1)
|
|
JP1MID = JP1MID + 1
|
|
10 CONTINUE
|
|
IDERIV = IDERIV - 1
|
|
JJ = KP1 - IDERIV
|
|
CALL BSPVN(T, JJ, K, 2, X, ILEFT, VNIKX, WORK, IWORK)
|
|
20 CONTINUE
|
|
C
|
|
JM = KP1*(KP1+1)/2
|
|
DO 30 L = 1,JM
|
|
WORK(L) = 0.0E0
|
|
30 CONTINUE
|
|
C A(I,I) = WORK(I*(I+3)/2) = 1.0 I = 1,K
|
|
L = 2
|
|
J = 0
|
|
DO 40 I = 1,K
|
|
J = J + L
|
|
WORK(J) = 1.0E0
|
|
L = L + 1
|
|
40 CONTINUE
|
|
KMD = K
|
|
DO 90 M=2,MHIGH
|
|
KMD = KMD - 1
|
|
FKMD = KMD
|
|
I = ILEFT
|
|
J = K
|
|
JJ = J*(J+1)/2
|
|
JM = JJ - J
|
|
DO 60 LDUMMY=1,KMD
|
|
IPKMD = I + KMD
|
|
FACTOR = FKMD/(T(IPKMD)-T(I))
|
|
DO 50 L=1,J
|
|
WORK(L+JJ) = (WORK(L+JJ)-WORK(L+JM))*FACTOR
|
|
50 CONTINUE
|
|
I = I - 1
|
|
J = J - 1
|
|
JJ = JM
|
|
JM = JM - J
|
|
60 CONTINUE
|
|
C
|
|
DO 80 I=1,K
|
|
V = 0.0E0
|
|
JLOW = MAX(I,M)
|
|
JJ = JLOW*(JLOW+1)/2
|
|
DO 70 J=JLOW,K
|
|
V = WORK(I+JJ)*VNIKX(J,M) + V
|
|
JJ = JJ + J + 1
|
|
70 CONTINUE
|
|
VNIKX(I,M) = V
|
|
80 CONTINUE
|
|
90 CONTINUE
|
|
100 RETURN
|
|
C
|
|
C
|
|
200 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'BSPVD', 'K DOES NOT SATISFY K.GE.1', 2,
|
|
+ 1)
|
|
RETURN
|
|
205 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'BSPVD',
|
|
+ 'NDERIV DOES NOT SATISFY 1.LE.NDERIV.LE.K', 2, 1)
|
|
RETURN
|
|
210 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'BSPVD',
|
|
+ 'LDVNIK DOES NOT SATISFY LDVNIK.GE.K', 2, 1)
|
|
RETURN
|
|
END
|