mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
211 lines
6.7 KiB
Fortran
211 lines
6.7 KiB
Fortran
*DECK CGECO
|
|
SUBROUTINE CGECO (A, LDA, N, IPVT, RCOND, Z)
|
|
C***BEGIN PROLOGUE CGECO
|
|
C***PURPOSE Factor a matrix using Gaussian elimination and estimate
|
|
C the condition number of the matrix.
|
|
C***LIBRARY SLATEC (LINPACK)
|
|
C***CATEGORY D2C1
|
|
C***TYPE COMPLEX (SGECO-S, DGECO-D, CGECO-C)
|
|
C***KEYWORDS CONDITION NUMBER, GENERAL MATRIX, LINEAR ALGEBRA, LINPACK,
|
|
C MATRIX FACTORIZATION
|
|
C***AUTHOR Moler, C. B., (U. of New Mexico)
|
|
C***DESCRIPTION
|
|
C
|
|
C CGECO factors a complex matrix by Gaussian elimination
|
|
C and estimates the condition of the matrix.
|
|
C
|
|
C If RCOND is not needed, CGEFA is slightly faster.
|
|
C To solve A*X = B , follow CGECO By CGESL.
|
|
C To Compute INVERSE(A)*C , follow CGECO by CGESL.
|
|
C To compute DETERMINANT(A) , follow CGECO by CGEDI.
|
|
C To compute INVERSE(A) , follow CGECO by CGEDI.
|
|
C
|
|
C On Entry
|
|
C
|
|
C A COMPLEX(LDA, N)
|
|
C the matrix to be factored.
|
|
C
|
|
C LDA INTEGER
|
|
C the leading dimension of the array A .
|
|
C
|
|
C N INTEGER
|
|
C the order of the matrix A .
|
|
C
|
|
C On Return
|
|
C
|
|
C A an upper triangular matrix and the multipliers
|
|
C which were used to obtain it.
|
|
C The factorization can be written A = L*U where
|
|
C L is a product of permutation and unit lower
|
|
C triangular matrices and U is upper triangular.
|
|
C
|
|
C IPVT INTEGER(N)
|
|
C an integer vector of pivot indices.
|
|
C
|
|
C RCOND REAL
|
|
C an estimate of the reciprocal condition of A .
|
|
C For the system A*X = B , relative perturbations
|
|
C in A and B of size EPSILON may cause
|
|
C relative perturbations in X of size EPSILON/RCOND .
|
|
C If RCOND is so small that the logical expression
|
|
C 1.0 + RCOND .EQ. 1.0
|
|
C is true, then A may be singular to working
|
|
C precision. In particular, RCOND is zero if
|
|
C exact singularity is detected or the estimate
|
|
C underflows.
|
|
C
|
|
C Z COMPLEX(N)
|
|
C a work vector whose contents are usually unimportant.
|
|
C If A is close to a singular matrix, then Z is
|
|
C an approximate null vector in the sense that
|
|
C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
|
|
C
|
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
|
C***ROUTINES CALLED CAXPY, CDOTC, CGEFA, CSSCAL, SCASUM
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 780814 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
|
C (WRB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE CGECO
|
|
INTEGER LDA,N,IPVT(*)
|
|
COMPLEX A(LDA,*),Z(*)
|
|
REAL RCOND
|
|
C
|
|
COMPLEX CDOTC,EK,T,WK,WKM
|
|
REAL ANORM,S,SCASUM,SM,YNORM
|
|
INTEGER INFO,J,K,KB,KP1,L
|
|
COMPLEX ZDUM,ZDUM1,ZDUM2,CSIGN1
|
|
REAL CABS1
|
|
CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
|
|
CSIGN1(ZDUM1,ZDUM2) = CABS1(ZDUM1)*(ZDUM2/CABS1(ZDUM2))
|
|
C
|
|
C COMPUTE 1-NORM OF A
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT CGECO
|
|
ANORM = 0.0E0
|
|
DO 10 J = 1, N
|
|
ANORM = MAX(ANORM,SCASUM(N,A(1,J),1))
|
|
10 CONTINUE
|
|
C
|
|
C FACTOR
|
|
C
|
|
CALL CGEFA(A,LDA,N,IPVT,INFO)
|
|
C
|
|
C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
|
|
C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND CTRANS(A)*Y = E .
|
|
C CTRANS(A) IS THE CONJUGATE TRANSPOSE OF A .
|
|
C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
|
|
C GROWTH IN THE ELEMENTS OF W WHERE CTRANS(U)*W = E .
|
|
C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
|
|
C
|
|
C SOLVE CTRANS(U)*W = E
|
|
C
|
|
EK = (1.0E0,0.0E0)
|
|
DO 20 J = 1, N
|
|
Z(J) = (0.0E0,0.0E0)
|
|
20 CONTINUE
|
|
DO 100 K = 1, N
|
|
IF (CABS1(Z(K)) .NE. 0.0E0) EK = CSIGN1(EK,-Z(K))
|
|
IF (CABS1(EK-Z(K)) .LE. CABS1(A(K,K))) GO TO 30
|
|
S = CABS1(A(K,K))/CABS1(EK-Z(K))
|
|
CALL CSSCAL(N,S,Z,1)
|
|
EK = CMPLX(S,0.0E0)*EK
|
|
30 CONTINUE
|
|
WK = EK - Z(K)
|
|
WKM = -EK - Z(K)
|
|
S = CABS1(WK)
|
|
SM = CABS1(WKM)
|
|
IF (CABS1(A(K,K)) .EQ. 0.0E0) GO TO 40
|
|
WK = WK/CONJG(A(K,K))
|
|
WKM = WKM/CONJG(A(K,K))
|
|
GO TO 50
|
|
40 CONTINUE
|
|
WK = (1.0E0,0.0E0)
|
|
WKM = (1.0E0,0.0E0)
|
|
50 CONTINUE
|
|
KP1 = K + 1
|
|
IF (KP1 .GT. N) GO TO 90
|
|
DO 60 J = KP1, N
|
|
SM = SM + CABS1(Z(J)+WKM*CONJG(A(K,J)))
|
|
Z(J) = Z(J) + WK*CONJG(A(K,J))
|
|
S = S + CABS1(Z(J))
|
|
60 CONTINUE
|
|
IF (S .GE. SM) GO TO 80
|
|
T = WKM - WK
|
|
WK = WKM
|
|
DO 70 J = KP1, N
|
|
Z(J) = Z(J) + T*CONJG(A(K,J))
|
|
70 CONTINUE
|
|
80 CONTINUE
|
|
90 CONTINUE
|
|
Z(K) = WK
|
|
100 CONTINUE
|
|
S = 1.0E0/SCASUM(N,Z,1)
|
|
CALL CSSCAL(N,S,Z,1)
|
|
C
|
|
C SOLVE CTRANS(L)*Y = W
|
|
C
|
|
DO 120 KB = 1, N
|
|
K = N + 1 - KB
|
|
IF (K .LT. N) Z(K) = Z(K) + CDOTC(N-K,A(K+1,K),1,Z(K+1),1)
|
|
IF (CABS1(Z(K)) .LE. 1.0E0) GO TO 110
|
|
S = 1.0E0/CABS1(Z(K))
|
|
CALL CSSCAL(N,S,Z,1)
|
|
110 CONTINUE
|
|
L = IPVT(K)
|
|
T = Z(L)
|
|
Z(L) = Z(K)
|
|
Z(K) = T
|
|
120 CONTINUE
|
|
S = 1.0E0/SCASUM(N,Z,1)
|
|
CALL CSSCAL(N,S,Z,1)
|
|
C
|
|
YNORM = 1.0E0
|
|
C
|
|
C SOLVE L*V = Y
|
|
C
|
|
DO 140 K = 1, N
|
|
L = IPVT(K)
|
|
T = Z(L)
|
|
Z(L) = Z(K)
|
|
Z(K) = T
|
|
IF (K .LT. N) CALL CAXPY(N-K,T,A(K+1,K),1,Z(K+1),1)
|
|
IF (CABS1(Z(K)) .LE. 1.0E0) GO TO 130
|
|
S = 1.0E0/CABS1(Z(K))
|
|
CALL CSSCAL(N,S,Z,1)
|
|
YNORM = S*YNORM
|
|
130 CONTINUE
|
|
140 CONTINUE
|
|
S = 1.0E0/SCASUM(N,Z,1)
|
|
CALL CSSCAL(N,S,Z,1)
|
|
YNORM = S*YNORM
|
|
C
|
|
C SOLVE U*Z = V
|
|
C
|
|
DO 160 KB = 1, N
|
|
K = N + 1 - KB
|
|
IF (CABS1(Z(K)) .LE. CABS1(A(K,K))) GO TO 150
|
|
S = CABS1(A(K,K))/CABS1(Z(K))
|
|
CALL CSSCAL(N,S,Z,1)
|
|
YNORM = S*YNORM
|
|
150 CONTINUE
|
|
IF (CABS1(A(K,K)) .NE. 0.0E0) Z(K) = Z(K)/A(K,K)
|
|
IF (CABS1(A(K,K)) .EQ. 0.0E0) Z(K) = (1.0E0,0.0E0)
|
|
T = -Z(K)
|
|
CALL CAXPY(K-1,T,A(1,K),1,Z(1),1)
|
|
160 CONTINUE
|
|
C MAKE ZNORM = 1.0
|
|
S = 1.0E0/SCASUM(N,Z,1)
|
|
CALL CSSCAL(N,S,Z,1)
|
|
YNORM = S*YNORM
|
|
C
|
|
IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
|
|
IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
|
|
RETURN
|
|
END
|