mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
421 lines
13 KiB
Fortran
421 lines
13 KiB
Fortran
*DECK CGEMM
|
|
SUBROUTINE CGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
|
|
$ BETA, C, LDC)
|
|
C***BEGIN PROLOGUE CGEMM
|
|
C***PURPOSE Multiply a complex general matrix by a complex general
|
|
C matrix.
|
|
C***LIBRARY SLATEC (BLAS)
|
|
C***CATEGORY D1B6
|
|
C***TYPE COMPLEX (SGEMM-S, DGEMM-D, CGEMM-C)
|
|
C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
|
|
C***AUTHOR Dongarra, J., (ANL)
|
|
C Duff, I., (AERE)
|
|
C Du Croz, J., (NAG)
|
|
C Hammarling, S. (NAG)
|
|
C***DESCRIPTION
|
|
C
|
|
C CGEMM performs one of the matrix-matrix operations
|
|
C
|
|
C C := alpha*op( A )*op( B ) + beta*C,
|
|
C
|
|
C where op( X ) is one of
|
|
C
|
|
C op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),
|
|
C
|
|
C alpha and beta are scalars, and A, B and C are matrices, with op( A )
|
|
C an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
|
|
C
|
|
C Parameters
|
|
C ==========
|
|
C
|
|
C TRANSA - CHARACTER*1.
|
|
C On entry, TRANSA specifies the form of op( A ) to be used in
|
|
C the matrix multiplication as follows:
|
|
C
|
|
C TRANSA = 'N' or 'n', op( A ) = A.
|
|
C
|
|
C TRANSA = 'T' or 't', op( A ) = A'.
|
|
C
|
|
C TRANSA = 'C' or 'c', op( A ) = conjg( A' ).
|
|
C
|
|
C Unchanged on exit.
|
|
C
|
|
C TRANSB - CHARACTER*1.
|
|
C On entry, TRANSB specifies the form of op( B ) to be used in
|
|
C the matrix multiplication as follows:
|
|
C
|
|
C TRANSB = 'N' or 'n', op( B ) = B.
|
|
C
|
|
C TRANSB = 'T' or 't', op( B ) = B'.
|
|
C
|
|
C TRANSB = 'C' or 'c', op( B ) = conjg( B' ).
|
|
C
|
|
C Unchanged on exit.
|
|
C
|
|
C M - INTEGER.
|
|
C On entry, M specifies the number of rows of the matrix
|
|
C op( A ) and of the matrix C. M must be at least zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C N - INTEGER.
|
|
C On entry, N specifies the number of columns of the matrix
|
|
C op( B ) and the number of columns of the matrix C. N must be
|
|
C at least zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C K - INTEGER.
|
|
C On entry, K specifies the number of columns of the matrix
|
|
C op( A ) and the number of rows of the matrix op( B ). K must
|
|
C be at least zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C ALPHA - COMPLEX .
|
|
C On entry, ALPHA specifies the scalar alpha.
|
|
C Unchanged on exit.
|
|
C
|
|
C A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
|
|
C k when TRANSA = 'N' or 'n', and is m otherwise.
|
|
C Before entry with TRANSA = 'N' or 'n', the leading m by k
|
|
C part of the array A must contain the matrix A, otherwise
|
|
C the leading k by m part of the array A must contain the
|
|
C matrix A.
|
|
C Unchanged on exit.
|
|
C
|
|
C LDA - INTEGER.
|
|
C On entry, LDA specifies the first dimension of A as declared
|
|
C in the calling (sub) program. When TRANSA = 'N' or 'n' then
|
|
C LDA must be at least max( 1, m ), otherwise LDA must be at
|
|
C least max( 1, k ).
|
|
C Unchanged on exit.
|
|
C
|
|
C B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is
|
|
C n when TRANSB = 'N' or 'n', and is k otherwise.
|
|
C Before entry with TRANSB = 'N' or 'n', the leading k by n
|
|
C part of the array B must contain the matrix B, otherwise
|
|
C the leading n by k part of the array B must contain the
|
|
C matrix B.
|
|
C Unchanged on exit.
|
|
C
|
|
C LDB - INTEGER.
|
|
C On entry, LDB specifies the first dimension of B as declared
|
|
C in the calling (sub) program. When TRANSB = 'N' or 'n' then
|
|
C LDB must be at least max( 1, k ), otherwise LDB must be at
|
|
C least max( 1, n ).
|
|
C Unchanged on exit.
|
|
C
|
|
C BETA - COMPLEX .
|
|
C On entry, BETA specifies the scalar beta. When BETA is
|
|
C supplied as zero then C need not be set on input.
|
|
C Unchanged on exit.
|
|
C
|
|
C C - COMPLEX array of DIMENSION ( LDC, n ).
|
|
C Before entry, the leading m by n part of the array C must
|
|
C contain the matrix C, except when beta is zero, in which
|
|
C case C need not be set on entry.
|
|
C On exit, the array C is overwritten by the m by n matrix
|
|
C ( alpha*op( A )*op( B ) + beta*C ).
|
|
C
|
|
C LDC - INTEGER.
|
|
C On entry, LDC specifies the first dimension of C as declared
|
|
C in the calling (sub) program. LDC must be at least
|
|
C max( 1, m ).
|
|
C Unchanged on exit.
|
|
C
|
|
C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
|
|
C A set of level 3 basic linear algebra subprograms.
|
|
C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
|
|
C***ROUTINES CALLED LSAME, XERBLA
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 890208 DATE WRITTEN
|
|
C 910605 Modified to meet SLATEC prologue standards. Only comment
|
|
C lines were modified. (BKS)
|
|
C***END PROLOGUE CGEMM
|
|
C .. Scalar Arguments ..
|
|
CHARACTER*1 TRANSA, TRANSB
|
|
INTEGER M, N, K, LDA, LDB, LDC
|
|
COMPLEX ALPHA, BETA
|
|
C .. Array Arguments ..
|
|
COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * )
|
|
C .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
C .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
C .. Intrinsic Functions ..
|
|
INTRINSIC CONJG, MAX
|
|
C .. Local Scalars ..
|
|
LOGICAL CONJA, CONJB, NOTA, NOTB
|
|
INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB
|
|
COMPLEX TEMP
|
|
C .. Parameters ..
|
|
COMPLEX ONE
|
|
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
|
|
COMPLEX ZERO
|
|
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
|
|
C***FIRST EXECUTABLE STATEMENT CGEMM
|
|
C
|
|
C Set NOTA and NOTB as true if A and B respectively are not
|
|
C conjugated or transposed, set CONJA and CONJB as true if A and
|
|
C B respectively are to be transposed but not conjugated and set
|
|
C NROWA, NCOLA and NROWB as the number of rows and columns of A
|
|
C and the number of rows of B respectively.
|
|
C
|
|
NOTA = LSAME( TRANSA, 'N' )
|
|
NOTB = LSAME( TRANSB, 'N' )
|
|
CONJA = LSAME( TRANSA, 'C' )
|
|
CONJB = LSAME( TRANSB, 'C' )
|
|
IF( NOTA )THEN
|
|
NROWA = M
|
|
NCOLA = K
|
|
ELSE
|
|
NROWA = K
|
|
NCOLA = M
|
|
END IF
|
|
IF( NOTB )THEN
|
|
NROWB = K
|
|
ELSE
|
|
NROWB = N
|
|
END IF
|
|
C
|
|
C Test the input parameters.
|
|
C
|
|
INFO = 0
|
|
IF( ( .NOT.NOTA ).AND.
|
|
$ ( .NOT.CONJA ).AND.
|
|
$ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN
|
|
INFO = 1
|
|
ELSE IF( ( .NOT.NOTB ).AND.
|
|
$ ( .NOT.CONJB ).AND.
|
|
$ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN
|
|
INFO = 2
|
|
ELSE IF( M .LT.0 )THEN
|
|
INFO = 3
|
|
ELSE IF( N .LT.0 )THEN
|
|
INFO = 4
|
|
ELSE IF( K .LT.0 )THEN
|
|
INFO = 5
|
|
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
|
|
INFO = 8
|
|
ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN
|
|
INFO = 10
|
|
ELSE IF( LDC.LT.MAX( 1, M ) )THEN
|
|
INFO = 13
|
|
END IF
|
|
IF( INFO.NE.0 )THEN
|
|
CALL XERBLA( 'CGEMM ', INFO )
|
|
RETURN
|
|
END IF
|
|
C
|
|
C Quick return if possible.
|
|
C
|
|
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
|
|
$ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
|
|
$ RETURN
|
|
C
|
|
C And when alpha.eq.zero.
|
|
C
|
|
IF( ALPHA.EQ.ZERO )THEN
|
|
IF( BETA.EQ.ZERO )THEN
|
|
DO 20, J = 1, N
|
|
DO 10, I = 1, M
|
|
C( I, J ) = ZERO
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
ELSE
|
|
DO 40, J = 1, N
|
|
DO 30, I = 1, M
|
|
C( I, J ) = BETA*C( I, J )
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
END IF
|
|
RETURN
|
|
END IF
|
|
C
|
|
C Start the operations.
|
|
C
|
|
IF( NOTB )THEN
|
|
IF( NOTA )THEN
|
|
C
|
|
C Form C := alpha*A*B + beta*C.
|
|
C
|
|
DO 90, J = 1, N
|
|
IF( BETA.EQ.ZERO )THEN
|
|
DO 50, I = 1, M
|
|
C( I, J ) = ZERO
|
|
50 CONTINUE
|
|
ELSE IF( BETA.NE.ONE )THEN
|
|
DO 60, I = 1, M
|
|
C( I, J ) = BETA*C( I, J )
|
|
60 CONTINUE
|
|
END IF
|
|
DO 80, L = 1, K
|
|
IF( B( L, J ).NE.ZERO )THEN
|
|
TEMP = ALPHA*B( L, J )
|
|
DO 70, I = 1, M
|
|
C( I, J ) = C( I, J ) + TEMP*A( I, L )
|
|
70 CONTINUE
|
|
END IF
|
|
80 CONTINUE
|
|
90 CONTINUE
|
|
ELSE IF( CONJA )THEN
|
|
C
|
|
C Form C := alpha*conjg( A' )*B + beta*C.
|
|
C
|
|
DO 120, J = 1, N
|
|
DO 110, I = 1, M
|
|
TEMP = ZERO
|
|
DO 100, L = 1, K
|
|
TEMP = TEMP + CONJG( A( L, I ) )*B( L, J )
|
|
100 CONTINUE
|
|
IF( BETA.EQ.ZERO )THEN
|
|
C( I, J ) = ALPHA*TEMP
|
|
ELSE
|
|
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
|
|
END IF
|
|
110 CONTINUE
|
|
120 CONTINUE
|
|
ELSE
|
|
C
|
|
C Form C := alpha*A'*B + beta*C
|
|
C
|
|
DO 150, J = 1, N
|
|
DO 140, I = 1, M
|
|
TEMP = ZERO
|
|
DO 130, L = 1, K
|
|
TEMP = TEMP + A( L, I )*B( L, J )
|
|
130 CONTINUE
|
|
IF( BETA.EQ.ZERO )THEN
|
|
C( I, J ) = ALPHA*TEMP
|
|
ELSE
|
|
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
|
|
END IF
|
|
140 CONTINUE
|
|
150 CONTINUE
|
|
END IF
|
|
ELSE IF( NOTA )THEN
|
|
IF( CONJB )THEN
|
|
C
|
|
C Form C := alpha*A*conjg( B' ) + beta*C.
|
|
C
|
|
DO 200, J = 1, N
|
|
IF( BETA.EQ.ZERO )THEN
|
|
DO 160, I = 1, M
|
|
C( I, J ) = ZERO
|
|
160 CONTINUE
|
|
ELSE IF( BETA.NE.ONE )THEN
|
|
DO 170, I = 1, M
|
|
C( I, J ) = BETA*C( I, J )
|
|
170 CONTINUE
|
|
END IF
|
|
DO 190, L = 1, K
|
|
IF( B( J, L ).NE.ZERO )THEN
|
|
TEMP = ALPHA*CONJG( B( J, L ) )
|
|
DO 180, I = 1, M
|
|
C( I, J ) = C( I, J ) + TEMP*A( I, L )
|
|
180 CONTINUE
|
|
END IF
|
|
190 CONTINUE
|
|
200 CONTINUE
|
|
ELSE
|
|
C
|
|
C Form C := alpha*A*B' + beta*C
|
|
C
|
|
DO 250, J = 1, N
|
|
IF( BETA.EQ.ZERO )THEN
|
|
DO 210, I = 1, M
|
|
C( I, J ) = ZERO
|
|
210 CONTINUE
|
|
ELSE IF( BETA.NE.ONE )THEN
|
|
DO 220, I = 1, M
|
|
C( I, J ) = BETA*C( I, J )
|
|
220 CONTINUE
|
|
END IF
|
|
DO 240, L = 1, K
|
|
IF( B( J, L ).NE.ZERO )THEN
|
|
TEMP = ALPHA*B( J, L )
|
|
DO 230, I = 1, M
|
|
C( I, J ) = C( I, J ) + TEMP*A( I, L )
|
|
230 CONTINUE
|
|
END IF
|
|
240 CONTINUE
|
|
250 CONTINUE
|
|
END IF
|
|
ELSE IF( CONJA )THEN
|
|
IF( CONJB )THEN
|
|
C
|
|
C Form C := alpha*conjg( A' )*conjg( B' ) + beta*C.
|
|
C
|
|
DO 280, J = 1, N
|
|
DO 270, I = 1, M
|
|
TEMP = ZERO
|
|
DO 260, L = 1, K
|
|
TEMP = TEMP + CONJG( A( L, I ) )*CONJG( B( J, L ) )
|
|
260 CONTINUE
|
|
IF( BETA.EQ.ZERO )THEN
|
|
C( I, J ) = ALPHA*TEMP
|
|
ELSE
|
|
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
|
|
END IF
|
|
270 CONTINUE
|
|
280 CONTINUE
|
|
ELSE
|
|
C
|
|
C Form C := alpha*conjg( A' )*B' + beta*C
|
|
C
|
|
DO 310, J = 1, N
|
|
DO 300, I = 1, M
|
|
TEMP = ZERO
|
|
DO 290, L = 1, K
|
|
TEMP = TEMP + CONJG( A( L, I ) )*B( J, L )
|
|
290 CONTINUE
|
|
IF( BETA.EQ.ZERO )THEN
|
|
C( I, J ) = ALPHA*TEMP
|
|
ELSE
|
|
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
|
|
END IF
|
|
300 CONTINUE
|
|
310 CONTINUE
|
|
END IF
|
|
ELSE
|
|
IF( CONJB )THEN
|
|
C
|
|
C Form C := alpha*A'*conjg( B' ) + beta*C
|
|
C
|
|
DO 340, J = 1, N
|
|
DO 330, I = 1, M
|
|
TEMP = ZERO
|
|
DO 320, L = 1, K
|
|
TEMP = TEMP + A( L, I )*CONJG( B( J, L ) )
|
|
320 CONTINUE
|
|
IF( BETA.EQ.ZERO )THEN
|
|
C( I, J ) = ALPHA*TEMP
|
|
ELSE
|
|
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
|
|
END IF
|
|
330 CONTINUE
|
|
340 CONTINUE
|
|
ELSE
|
|
C
|
|
C Form C := alpha*A'*B' + beta*C
|
|
C
|
|
DO 370, J = 1, N
|
|
DO 360, I = 1, M
|
|
TEMP = ZERO
|
|
DO 350, L = 1, K
|
|
TEMP = TEMP + A( L, I )*B( J, L )
|
|
350 CONTINUE
|
|
IF( BETA.EQ.ZERO )THEN
|
|
C( I, J ) = ALPHA*TEMP
|
|
ELSE
|
|
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
|
|
END IF
|
|
360 CONTINUE
|
|
370 CONTINUE
|
|
END IF
|
|
END IF
|
|
C
|
|
RETURN
|
|
C
|
|
C End of CGEMM .
|
|
C
|
|
END
|