mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
288 lines
8.5 KiB
Fortran
288 lines
8.5 KiB
Fortran
*DECK CGEMV
|
|
SUBROUTINE CGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y,
|
|
$ INCY)
|
|
C***BEGIN PROLOGUE CGEMV
|
|
C***PURPOSE Multiply a complex vector by a complex general matrix.
|
|
C***LIBRARY SLATEC (BLAS)
|
|
C***CATEGORY D1B4
|
|
C***TYPE COMPLEX (SGEMV-S, DGEMV-D, CGEMV-C)
|
|
C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
|
|
C***AUTHOR Dongarra, J. J., (ANL)
|
|
C Du Croz, J., (NAG)
|
|
C Hammarling, S., (NAG)
|
|
C Hanson, R. J., (SNLA)
|
|
C***DESCRIPTION
|
|
C
|
|
C CGEMV performs one of the matrix-vector operations
|
|
C
|
|
C y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
|
|
C
|
|
C y := alpha*conjg( A' )*x + beta*y,
|
|
C
|
|
C where alpha and beta are scalars, x and y are vectors and A is an
|
|
C m by n matrix.
|
|
C
|
|
C Parameters
|
|
C ==========
|
|
C
|
|
C TRANS - CHARACTER*1.
|
|
C On entry, TRANS specifies the operation to be performed as
|
|
C follows:
|
|
C
|
|
C TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
|
C
|
|
C TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
|
|
C
|
|
C TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
|
|
C
|
|
C Unchanged on exit.
|
|
C
|
|
C M - INTEGER.
|
|
C On entry, M specifies the number of rows of the matrix A.
|
|
C M must be at least zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C N - INTEGER.
|
|
C On entry, N specifies the number of columns of the matrix A.
|
|
C N must be at least zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C ALPHA - COMPLEX .
|
|
C On entry, ALPHA specifies the scalar alpha.
|
|
C Unchanged on exit.
|
|
C
|
|
C A - COMPLEX array of DIMENSION ( LDA, n ).
|
|
C Before entry, the leading m by n part of the array A must
|
|
C contain the matrix of coefficients.
|
|
C Unchanged on exit.
|
|
C
|
|
C LDA - INTEGER.
|
|
C On entry, LDA specifies the first dimension of A as declared
|
|
C in the calling (sub) program. LDA must be at least
|
|
C max( 1, m ).
|
|
C Unchanged on exit.
|
|
C
|
|
C X - COMPLEX array of DIMENSION at least
|
|
C ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
|
C and at least
|
|
C ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
|
C Before entry, the incremented array X must contain the
|
|
C vector x.
|
|
C Unchanged on exit.
|
|
C
|
|
C INCX - INTEGER.
|
|
C On entry, INCX specifies the increment for the elements of
|
|
C X. INCX must not be zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C BETA - COMPLEX .
|
|
C On entry, BETA specifies the scalar beta. When BETA is
|
|
C supplied as zero then Y need not be set on input.
|
|
C Unchanged on exit.
|
|
C
|
|
C Y - COMPLEX array of DIMENSION at least
|
|
C ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
|
C and at least
|
|
C ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
|
C Before entry with BETA non-zero, the incremented array Y
|
|
C must contain the vector y. On exit, Y is overwritten by the
|
|
C updated vector y.
|
|
C
|
|
C INCY - INTEGER.
|
|
C On entry, INCY specifies the increment for the elements of
|
|
C Y. INCY must not be zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
|
|
C Hanson, R. J. An extended set of Fortran basic linear
|
|
C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
|
|
C pp. 1-17, March 1988.
|
|
C***ROUTINES CALLED LSAME, XERBLA
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 861022 DATE WRITTEN
|
|
C 910605 Modified to meet SLATEC prologue standards. Only comment
|
|
C lines were modified. (BKS)
|
|
C***END PROLOGUE CGEMV
|
|
C .. Scalar Arguments ..
|
|
COMPLEX ALPHA, BETA
|
|
INTEGER INCX, INCY, LDA, M, N
|
|
CHARACTER*1 TRANS
|
|
C .. Array Arguments ..
|
|
COMPLEX A( LDA, * ), X( * ), Y( * )
|
|
C .. Parameters ..
|
|
COMPLEX ONE
|
|
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
|
|
COMPLEX ZERO
|
|
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
|
|
C .. Local Scalars ..
|
|
COMPLEX TEMP
|
|
INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY
|
|
LOGICAL NOCONJ
|
|
C .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
C .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
C .. Intrinsic Functions ..
|
|
INTRINSIC CONJG, MAX
|
|
C***FIRST EXECUTABLE STATEMENT CGEMV
|
|
C
|
|
C Test the input parameters.
|
|
C
|
|
INFO = 0
|
|
IF ( .NOT.LSAME( TRANS, 'N' ).AND.
|
|
$ .NOT.LSAME( TRANS, 'T' ).AND.
|
|
$ .NOT.LSAME( TRANS, 'C' ) )THEN
|
|
INFO = 1
|
|
ELSE IF( M.LT.0 )THEN
|
|
INFO = 2
|
|
ELSE IF( N.LT.0 )THEN
|
|
INFO = 3
|
|
ELSE IF( LDA.LT.MAX( 1, M ) )THEN
|
|
INFO = 6
|
|
ELSE IF( INCX.EQ.0 )THEN
|
|
INFO = 8
|
|
ELSE IF( INCY.EQ.0 )THEN
|
|
INFO = 11
|
|
END IF
|
|
IF( INFO.NE.0 )THEN
|
|
CALL XERBLA( 'CGEMV ', INFO )
|
|
RETURN
|
|
END IF
|
|
C
|
|
C Quick return if possible.
|
|
C
|
|
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
|
|
$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
|
|
$ RETURN
|
|
C
|
|
NOCONJ = LSAME( TRANS, 'T' )
|
|
C
|
|
C Set LENX and LENY, the lengths of the vectors x and y, and set
|
|
C up the start points in X and Y.
|
|
C
|
|
IF( LSAME( TRANS, 'N' ) )THEN
|
|
LENX = N
|
|
LENY = M
|
|
ELSE
|
|
LENX = M
|
|
LENY = N
|
|
END IF
|
|
IF( INCX.GT.0 )THEN
|
|
KX = 1
|
|
ELSE
|
|
KX = 1 - ( LENX - 1 )*INCX
|
|
END IF
|
|
IF( INCY.GT.0 )THEN
|
|
KY = 1
|
|
ELSE
|
|
KY = 1 - ( LENY - 1 )*INCY
|
|
END IF
|
|
C
|
|
C Start the operations. In this version the elements of A are
|
|
C accessed sequentially with one pass through A.
|
|
C
|
|
C First form y := beta*y.
|
|
C
|
|
IF( BETA.NE.ONE )THEN
|
|
IF( INCY.EQ.1 )THEN
|
|
IF( BETA.EQ.ZERO )THEN
|
|
DO 10, I = 1, LENY
|
|
Y( I ) = ZERO
|
|
10 CONTINUE
|
|
ELSE
|
|
DO 20, I = 1, LENY
|
|
Y( I ) = BETA*Y( I )
|
|
20 CONTINUE
|
|
END IF
|
|
ELSE
|
|
IY = KY
|
|
IF( BETA.EQ.ZERO )THEN
|
|
DO 30, I = 1, LENY
|
|
Y( IY ) = ZERO
|
|
IY = IY + INCY
|
|
30 CONTINUE
|
|
ELSE
|
|
DO 40, I = 1, LENY
|
|
Y( IY ) = BETA*Y( IY )
|
|
IY = IY + INCY
|
|
40 CONTINUE
|
|
END IF
|
|
END IF
|
|
END IF
|
|
IF( ALPHA.EQ.ZERO )
|
|
$ RETURN
|
|
IF( LSAME( TRANS, 'N' ) )THEN
|
|
C
|
|
C Form y := alpha*A*x + y.
|
|
C
|
|
JX = KX
|
|
IF( INCY.EQ.1 )THEN
|
|
DO 60, J = 1, N
|
|
IF( X( JX ).NE.ZERO )THEN
|
|
TEMP = ALPHA*X( JX )
|
|
DO 50, I = 1, M
|
|
Y( I ) = Y( I ) + TEMP*A( I, J )
|
|
50 CONTINUE
|
|
END IF
|
|
JX = JX + INCX
|
|
60 CONTINUE
|
|
ELSE
|
|
DO 80, J = 1, N
|
|
IF( X( JX ).NE.ZERO )THEN
|
|
TEMP = ALPHA*X( JX )
|
|
IY = KY
|
|
DO 70, I = 1, M
|
|
Y( IY ) = Y( IY ) + TEMP*A( I, J )
|
|
IY = IY + INCY
|
|
70 CONTINUE
|
|
END IF
|
|
JX = JX + INCX
|
|
80 CONTINUE
|
|
END IF
|
|
ELSE
|
|
C
|
|
C Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
|
|
C
|
|
JY = KY
|
|
IF( INCX.EQ.1 )THEN
|
|
DO 110, J = 1, N
|
|
TEMP = ZERO
|
|
IF( NOCONJ )THEN
|
|
DO 90, I = 1, M
|
|
TEMP = TEMP + A( I, J )*X( I )
|
|
90 CONTINUE
|
|
ELSE
|
|
DO 100, I = 1, M
|
|
TEMP = TEMP + CONJG( A( I, J ) )*X( I )
|
|
100 CONTINUE
|
|
END IF
|
|
Y( JY ) = Y( JY ) + ALPHA*TEMP
|
|
JY = JY + INCY
|
|
110 CONTINUE
|
|
ELSE
|
|
DO 140, J = 1, N
|
|
TEMP = ZERO
|
|
IX = KX
|
|
IF( NOCONJ )THEN
|
|
DO 120, I = 1, M
|
|
TEMP = TEMP + A( I, J )*X( IX )
|
|
IX = IX + INCX
|
|
120 CONTINUE
|
|
ELSE
|
|
DO 130, I = 1, M
|
|
TEMP = TEMP + CONJG( A( I, J ) )*X( IX )
|
|
IX = IX + INCX
|
|
130 CONTINUE
|
|
END IF
|
|
Y( JY ) = Y( JY ) + ALPHA*TEMP
|
|
JY = JY + INCY
|
|
140 CONTINUE
|
|
END IF
|
|
END IF
|
|
C
|
|
RETURN
|
|
C
|
|
C End of CGEMV .
|
|
C
|
|
END
|