mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
106 lines
3.1 KiB
Fortran
106 lines
3.1 KiB
Fortran
*DECK CPTSL
|
|
SUBROUTINE CPTSL (N, D, E, B)
|
|
C***BEGIN PROLOGUE CPTSL
|
|
C***PURPOSE Solve a positive definite tridiagonal linear system.
|
|
C***LIBRARY SLATEC (LINPACK)
|
|
C***CATEGORY D2D2A
|
|
C***TYPE COMPLEX (SPTSL-S, DPTSL-D, CPTSL-C)
|
|
C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, POSITIVE DEFINITE, SOLVE,
|
|
C TRIDIAGONAL
|
|
C***AUTHOR Dongarra, J., (ANL)
|
|
C***DESCRIPTION
|
|
C
|
|
C CPTSL given a positive definite tridiagonal matrix and a right
|
|
C hand side will find the solution.
|
|
C
|
|
C On Entry
|
|
C
|
|
C N INTEGER
|
|
C is the order of the tridiagonal matrix.
|
|
C
|
|
C D COMPLEX(N)
|
|
C is the diagonal of the tridiagonal matrix.
|
|
C On output D is destroyed.
|
|
C
|
|
C E COMPLEX(N)
|
|
C is the offdiagonal of the tridiagonal matrix.
|
|
C E(1) through E(N-1) should contain the
|
|
C offdiagonal.
|
|
C
|
|
C B COMPLEX(N)
|
|
C is the right hand side vector.
|
|
C
|
|
C On Return
|
|
C
|
|
C B contains the solution.
|
|
C
|
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
|
C***ROUTINES CALLED (NONE)
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 780814 DATE WRITTEN
|
|
C 890505 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
|
C (WRB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE CPTSL
|
|
INTEGER N
|
|
COMPLEX D(*),E(*),B(*)
|
|
C
|
|
INTEGER K,KBM1,KE,KF,KP1,NM1,NM1D2
|
|
COMPLEX T1,T2
|
|
C
|
|
C CHECK FOR 1 X 1 CASE
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT CPTSL
|
|
IF (N .NE. 1) GO TO 10
|
|
B(1) = B(1)/D(1)
|
|
GO TO 70
|
|
10 CONTINUE
|
|
NM1 = N - 1
|
|
NM1D2 = NM1/2
|
|
IF (N .EQ. 2) GO TO 30
|
|
KBM1 = N - 1
|
|
C
|
|
C ZERO TOP HALF OF SUBDIAGONAL AND BOTTOM HALF OF
|
|
C SUPERDIAGONAL
|
|
C
|
|
DO 20 K = 1, NM1D2
|
|
T1 = CONJG(E(K))/D(K)
|
|
D(K+1) = D(K+1) - T1*E(K)
|
|
B(K+1) = B(K+1) - T1*B(K)
|
|
T2 = E(KBM1)/D(KBM1+1)
|
|
D(KBM1) = D(KBM1) - T2*CONJG(E(KBM1))
|
|
B(KBM1) = B(KBM1) - T2*B(KBM1+1)
|
|
KBM1 = KBM1 - 1
|
|
20 CONTINUE
|
|
30 CONTINUE
|
|
KP1 = NM1D2 + 1
|
|
C
|
|
C CLEAN UP FOR POSSIBLE 2 X 2 BLOCK AT CENTER
|
|
C
|
|
IF (MOD(N,2) .NE. 0) GO TO 40
|
|
T1 = CONJG(E(KP1))/D(KP1)
|
|
D(KP1+1) = D(KP1+1) - T1*E(KP1)
|
|
B(KP1+1) = B(KP1+1) - T1*B(KP1)
|
|
KP1 = KP1 + 1
|
|
40 CONTINUE
|
|
C
|
|
C BACK SOLVE STARTING AT THE CENTER, GOING TOWARDS THE TOP
|
|
C AND BOTTOM
|
|
C
|
|
B(KP1) = B(KP1)/D(KP1)
|
|
IF (N .EQ. 2) GO TO 60
|
|
K = KP1 - 1
|
|
KE = KP1 + NM1D2 - 1
|
|
DO 50 KF = KP1, KE
|
|
B(K) = (B(K) - E(K)*B(K+1))/D(K)
|
|
B(KF+1) = (B(KF+1) - CONJG(E(KF))*B(KF))/D(KF+1)
|
|
K = K - 1
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
IF (MOD(N,2) .EQ. 0) B(1) = (B(1) - E(1)*B(2))/D(1)
|
|
70 CONTINUE
|
|
RETURN
|
|
END
|