mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
149 lines
5 KiB
Fortran
149 lines
5 KiB
Fortran
*DECK CTRDI
|
|
SUBROUTINE CTRDI (T, LDT, N, DET, JOB, INFO)
|
|
C***BEGIN PROLOGUE CTRDI
|
|
C***PURPOSE Compute the determinant and inverse of a triangular matrix.
|
|
C***LIBRARY SLATEC (LINPACK)
|
|
C***CATEGORY D2C3, D3C3
|
|
C***TYPE COMPLEX (STRDI-S, DTRDI-D, CTRDI-C)
|
|
C***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK,
|
|
C TRIANGULAR MATRIX
|
|
C***AUTHOR Moler, C. B., (U. of New Mexico)
|
|
C***DESCRIPTION
|
|
C
|
|
C CTRDI computes the determinant and inverse of a complex
|
|
C triangular matrix.
|
|
C
|
|
C On Entry
|
|
C
|
|
C T COMPLEX(LDT,N)
|
|
C T contains the triangular matrix. The zero
|
|
C elements of the matrix are not referenced, and
|
|
C the corresponding elements of the array can be
|
|
C used to store other information.
|
|
C
|
|
C LDT INTEGER
|
|
C LDT is the leading dimension of the array T.
|
|
C
|
|
C N INTEGER
|
|
C N is the order of the system.
|
|
C
|
|
C JOB INTEGER
|
|
C = 010 no det, inverse of lower triangular.
|
|
C = 011 no det, inverse of upper triangular.
|
|
C = 100 det, no inverse.
|
|
C = 110 det, inverse of lower triangular.
|
|
C = 111 det, inverse of upper triangular.
|
|
C
|
|
C On Return
|
|
C
|
|
C T inverse of original matrix if requested.
|
|
C Otherwise unchanged.
|
|
C
|
|
C DET COMPLEX(2)
|
|
C determinant of original matrix if requested.
|
|
C Otherwise not referenced.
|
|
C Determinant = DET(1) * 10.0**DET(2)
|
|
C with 1.0 .LE. CABS1(DET(1)) .LT. 10.0
|
|
C or DET(1) .EQ. 0.0 .
|
|
C
|
|
C INFO INTEGER
|
|
C INFO contains zero if the system is nonsingular
|
|
C and the inverse is requested.
|
|
C Otherwise INFO contains the index of
|
|
C a zero diagonal element of T.
|
|
C
|
|
C
|
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
|
C***ROUTINES CALLED CAXPY, CSCAL
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 780814 DATE WRITTEN
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
|
C (WRB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE CTRDI
|
|
INTEGER LDT,N,JOB,INFO
|
|
COMPLEX T(LDT,*),DET(2)
|
|
C
|
|
COMPLEX TEMP
|
|
REAL TEN
|
|
INTEGER I,J,K,KB,KM1,KP1
|
|
COMPLEX ZDUM
|
|
REAL CABS1
|
|
CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
|
|
C***FIRST EXECUTABLE STATEMENT CTRDI
|
|
C
|
|
C COMPUTE DETERMINANT
|
|
C
|
|
IF (JOB/100 .EQ. 0) GO TO 70
|
|
DET(1) = (1.0E0,0.0E0)
|
|
DET(2) = (0.0E0,0.0E0)
|
|
TEN = 10.0E0
|
|
DO 50 I = 1, N
|
|
DET(1) = T(I,I)*DET(1)
|
|
IF (CABS1(DET(1)) .EQ. 0.0E0) GO TO 60
|
|
10 IF (CABS1(DET(1)) .GE. 1.0E0) GO TO 20
|
|
DET(1) = CMPLX(TEN,0.0E0)*DET(1)
|
|
DET(2) = DET(2) - (1.0E0,0.0E0)
|
|
GO TO 10
|
|
20 CONTINUE
|
|
30 IF (CABS1(DET(1)) .LT. TEN) GO TO 40
|
|
DET(1) = DET(1)/CMPLX(TEN,0.0E0)
|
|
DET(2) = DET(2) + (1.0E0,0.0E0)
|
|
GO TO 30
|
|
40 CONTINUE
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
C
|
|
C COMPUTE INVERSE OF UPPER TRIANGULAR
|
|
C
|
|
IF (MOD(JOB/10,10) .EQ. 0) GO TO 170
|
|
IF (MOD(JOB,10) .EQ. 0) GO TO 120
|
|
DO 100 K = 1, N
|
|
INFO = K
|
|
IF (CABS1(T(K,K)) .EQ. 0.0E0) GO TO 110
|
|
T(K,K) = (1.0E0,0.0E0)/T(K,K)
|
|
TEMP = -T(K,K)
|
|
CALL CSCAL(K-1,TEMP,T(1,K),1)
|
|
KP1 = K + 1
|
|
IF (N .LT. KP1) GO TO 90
|
|
DO 80 J = KP1, N
|
|
TEMP = T(K,J)
|
|
T(K,J) = (0.0E0,0.0E0)
|
|
CALL CAXPY(K,TEMP,T(1,K),1,T(1,J),1)
|
|
80 CONTINUE
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
INFO = 0
|
|
110 CONTINUE
|
|
GO TO 160
|
|
120 CONTINUE
|
|
C
|
|
C COMPUTE INVERSE OF LOWER TRIANGULAR
|
|
C
|
|
DO 150 KB = 1, N
|
|
K = N + 1 - KB
|
|
INFO = K
|
|
IF (CABS1(T(K,K)) .EQ. 0.0E0) GO TO 180
|
|
T(K,K) = (1.0E0,0.0E0)/T(K,K)
|
|
TEMP = -T(K,K)
|
|
IF (K .NE. N) CALL CSCAL(N-K,TEMP,T(K+1,K),1)
|
|
KM1 = K - 1
|
|
IF (KM1 .LT. 1) GO TO 140
|
|
DO 130 J = 1, KM1
|
|
TEMP = T(K,J)
|
|
T(K,J) = (0.0E0,0.0E0)
|
|
CALL CAXPY(N-K+1,TEMP,T(K,K),1,T(K,J),1)
|
|
130 CONTINUE
|
|
140 CONTINUE
|
|
150 CONTINUE
|
|
INFO = 0
|
|
160 CONTINUE
|
|
170 CONTINUE
|
|
180 CONTINUE
|
|
RETURN
|
|
END
|