mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
393 lines
11 KiB
Fortran
393 lines
11 KiB
Fortran
*DECK DBSKNU
|
|
SUBROUTINE DBSKNU (X, FNU, KODE, N, Y, NZ)
|
|
C***BEGIN PROLOGUE DBSKNU
|
|
C***SUBSIDIARY
|
|
C***PURPOSE Subsidiary to DBESK
|
|
C***LIBRARY SLATEC
|
|
C***TYPE DOUBLE PRECISION (BESKNU-S, DBSKNU-D)
|
|
C***AUTHOR Amos, D. E., (SNLA)
|
|
C***DESCRIPTION
|
|
C
|
|
C Abstract **** A DOUBLE PRECISION routine ****
|
|
C DBSKNU computes N member sequences of K Bessel functions
|
|
C K/SUB(FNU+I-1)/(X), I=1,N for non-negative orders FNU and
|
|
C positive X. Equations of the references are implemented on
|
|
C small orders DNU for K/SUB(DNU)/(X) and K/SUB(DNU+1)/(X).
|
|
C Forward recursion with the three term recursion relation
|
|
C generates higher orders FNU+I-1, I=1,...,N. The parameter
|
|
C KODE permits K/SUB(FNU+I-1)/(X) values or scaled values
|
|
C EXP(X)*K/SUB(FNU+I-1)/(X), I=1,N to be returned.
|
|
C
|
|
C To start the recursion FNU is normalized to the interval
|
|
C -0.5.LE.DNU.LT.0.5. A special form of the power series is
|
|
C implemented on 0.LT.X.LE.X1 while the Miller algorithm for the
|
|
C K Bessel function in terms of the confluent hypergeometric
|
|
C function U(FNU+0.5,2*FNU+1,X) is implemented on X1.LT.X.LE.X2.
|
|
C For X.GT.X2, the asymptotic expansion for large X is used.
|
|
C When FNU is a half odd integer, a special formula for
|
|
C DNU=-0.5 and DNU+1.0=0.5 is used to start the recursion.
|
|
C
|
|
C The maximum number of significant digits obtainable
|
|
C is the smaller of 14 and the number of digits carried in
|
|
C DOUBLE PRECISION arithmetic.
|
|
C
|
|
C DBSKNU assumes that a significant digit SINH function is
|
|
C available.
|
|
C
|
|
C Description of Arguments
|
|
C
|
|
C INPUT X,FNU are DOUBLE PRECISION
|
|
C X - X.GT.0.0D0
|
|
C FNU - Order of initial K function, FNU.GE.0.0D0
|
|
C N - Number of members of the sequence, N.GE.1
|
|
C KODE - A parameter to indicate the scaling option
|
|
C KODE= 1 returns
|
|
C Y(I)= K/SUB(FNU+I-1)/(X)
|
|
C I=1,...,N
|
|
C = 2 returns
|
|
C Y(I)=EXP(X)*K/SUB(FNU+I-1)/(X)
|
|
C I=1,...,N
|
|
C
|
|
C OUTPUT Y is DOUBLE PRECISION
|
|
C Y - A vector whose first N components contain values
|
|
C for the sequence
|
|
C Y(I)= K/SUB(FNU+I-1)/(X), I=1,...,N or
|
|
C Y(I)=EXP(X)*K/SUB(FNU+I-1)/(X), I=1,...,N
|
|
C depending on KODE
|
|
C NZ - Number of components set to zero due to
|
|
C underflow,
|
|
C NZ= 0 , normal return
|
|
C NZ.NE.0 , first NZ components of Y set to zero
|
|
C due to underflow, Y(I)=0.0D0,I=1,...,NZ
|
|
C
|
|
C Error Conditions
|
|
C Improper input arguments - a fatal error
|
|
C Overflow - a fatal error
|
|
C Underflow with KODE=1 - a non-fatal error (NZ.NE.0)
|
|
C
|
|
C***SEE ALSO DBESK
|
|
C***REFERENCES N. M. Temme, On the numerical evaluation of the modified
|
|
C Bessel function of the third kind, Journal of
|
|
C Computational Physics 19, (1975), pp. 324-337.
|
|
C***ROUTINES CALLED D1MACH, DGAMMA, I1MACH, XERMSG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 790201 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890911 Removed unnecessary intrinsics. (WRB)
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
|
C (WRB)
|
|
C 900328 Added TYPE section. (WRB)
|
|
C 900727 Added EXTERNAL statement. (WRB)
|
|
C 910408 Updated the AUTHOR and REFERENCES sections. (WRB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE DBSKNU
|
|
C
|
|
INTEGER I, IFLAG, INU, J, K, KK, KODE, KODED, N, NN, NZ
|
|
INTEGER I1MACH
|
|
DOUBLE PRECISION A,AK,A1,A2,B,BK,CC,CK,COEF,CX,DK,DNU,DNU2,ELIM,
|
|
1 ETEST, EX, F, FC, FHS, FK, FKS, FLRX, FMU, FNU, G1, G2, P, PI,
|
|
2 PT, P1, P2, Q, RTHPI, RX, S, SMU, SQK, ST, S1, S2, TM, TOL, T1,
|
|
3 T2, X, X1, X2, Y
|
|
DIMENSION A(160), B(160), Y(*), CC(8)
|
|
DOUBLE PRECISION DGAMMA, D1MACH
|
|
EXTERNAL DGAMMA
|
|
SAVE X1, X2, PI, RTHPI, CC
|
|
DATA X1, X2 / 2.0D0, 17.0D0 /
|
|
DATA PI,RTHPI / 3.14159265358979D+00, 1.25331413731550D+00/
|
|
DATA CC(1), CC(2), CC(3), CC(4), CC(5), CC(6), CC(7), CC(8)
|
|
1 / 5.77215664901533D-01,-4.20026350340952D-02,
|
|
2-4.21977345555443D-02, 7.21894324666300D-03,-2.15241674114900D-04,
|
|
3-2.01348547807000D-05, 1.13302723200000D-06, 6.11609500000000D-09/
|
|
C***FIRST EXECUTABLE STATEMENT DBSKNU
|
|
KK = -I1MACH(15)
|
|
ELIM = 2.303D0*(KK*D1MACH(5)-3.0D0)
|
|
AK = D1MACH(3)
|
|
TOL = MAX(AK,1.0D-15)
|
|
IF (X.LE.0.0D0) GO TO 350
|
|
IF (FNU.LT.0.0D0) GO TO 360
|
|
IF (KODE.LT.1 .OR. KODE.GT.2) GO TO 370
|
|
IF (N.LT.1) GO TO 380
|
|
NZ = 0
|
|
IFLAG = 0
|
|
KODED = KODE
|
|
RX = 2.0D0/X
|
|
INU = INT(FNU+0.5D0)
|
|
DNU = FNU - INU
|
|
IF (ABS(DNU).EQ.0.5D0) GO TO 120
|
|
DNU2 = 0.0D0
|
|
IF (ABS(DNU).LT.TOL) GO TO 10
|
|
DNU2 = DNU*DNU
|
|
10 CONTINUE
|
|
IF (X.GT.X1) GO TO 120
|
|
C
|
|
C SERIES FOR X.LE.X1
|
|
C
|
|
A1 = 1.0D0 - DNU
|
|
A2 = 1.0D0 + DNU
|
|
T1 = 1.0D0/DGAMMA(A1)
|
|
T2 = 1.0D0/DGAMMA(A2)
|
|
IF (ABS(DNU).GT.0.1D0) GO TO 40
|
|
C SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU)
|
|
S = CC(1)
|
|
AK = 1.0D0
|
|
DO 20 K=2,8
|
|
AK = AK*DNU2
|
|
TM = CC(K)*AK
|
|
S = S + TM
|
|
IF (ABS(TM).LT.TOL) GO TO 30
|
|
20 CONTINUE
|
|
30 G1 = -S
|
|
GO TO 50
|
|
40 CONTINUE
|
|
G1 = (T1-T2)/(DNU+DNU)
|
|
50 CONTINUE
|
|
G2 = (T1+T2)*0.5D0
|
|
SMU = 1.0D0
|
|
FC = 1.0D0
|
|
FLRX = LOG(RX)
|
|
FMU = DNU*FLRX
|
|
IF (DNU.EQ.0.0D0) GO TO 60
|
|
FC = DNU*PI
|
|
FC = FC/SIN(FC)
|
|
IF (FMU.NE.0.0D0) SMU = SINH(FMU)/FMU
|
|
60 CONTINUE
|
|
F = FC*(G1*COSH(FMU)+G2*FLRX*SMU)
|
|
FC = EXP(FMU)
|
|
P = 0.5D0*FC/T2
|
|
Q = 0.5D0/(FC*T1)
|
|
AK = 1.0D0
|
|
CK = 1.0D0
|
|
BK = 1.0D0
|
|
S1 = F
|
|
S2 = P
|
|
IF (INU.GT.0 .OR. N.GT.1) GO TO 90
|
|
IF (X.LT.TOL) GO TO 80
|
|
CX = X*X*0.25D0
|
|
70 CONTINUE
|
|
F = (AK*F+P+Q)/(BK-DNU2)
|
|
P = P/(AK-DNU)
|
|
Q = Q/(AK+DNU)
|
|
CK = CK*CX/AK
|
|
T1 = CK*F
|
|
S1 = S1 + T1
|
|
BK = BK + AK + AK + 1.0D0
|
|
AK = AK + 1.0D0
|
|
S = ABS(T1)/(1.0D0+ABS(S1))
|
|
IF (S.GT.TOL) GO TO 70
|
|
80 CONTINUE
|
|
Y(1) = S1
|
|
IF (KODED.EQ.1) RETURN
|
|
Y(1) = S1*EXP(X)
|
|
RETURN
|
|
90 CONTINUE
|
|
IF (X.LT.TOL) GO TO 110
|
|
CX = X*X*0.25D0
|
|
100 CONTINUE
|
|
F = (AK*F+P+Q)/(BK-DNU2)
|
|
P = P/(AK-DNU)
|
|
Q = Q/(AK+DNU)
|
|
CK = CK*CX/AK
|
|
T1 = CK*F
|
|
S1 = S1 + T1
|
|
T2 = CK*(P-AK*F)
|
|
S2 = S2 + T2
|
|
BK = BK + AK + AK + 1.0D0
|
|
AK = AK + 1.0D0
|
|
S = ABS(T1)/(1.0D0+ABS(S1)) + ABS(T2)/(1.0D0+ABS(S2))
|
|
IF (S.GT.TOL) GO TO 100
|
|
110 CONTINUE
|
|
S2 = S2*RX
|
|
IF (KODED.EQ.1) GO TO 170
|
|
F = EXP(X)
|
|
S1 = S1*F
|
|
S2 = S2*F
|
|
GO TO 170
|
|
120 CONTINUE
|
|
COEF = RTHPI/SQRT(X)
|
|
IF (KODED.EQ.2) GO TO 130
|
|
IF (X.GT.ELIM) GO TO 330
|
|
COEF = COEF*EXP(-X)
|
|
130 CONTINUE
|
|
IF (ABS(DNU).EQ.0.5D0) GO TO 340
|
|
IF (X.GT.X2) GO TO 280
|
|
C
|
|
C MILLER ALGORITHM FOR X1.LT.X.LE.X2
|
|
C
|
|
ETEST = COS(PI*DNU)/(PI*X*TOL)
|
|
FKS = 1.0D0
|
|
FHS = 0.25D0
|
|
FK = 0.0D0
|
|
CK = X + X + 2.0D0
|
|
P1 = 0.0D0
|
|
P2 = 1.0D0
|
|
K = 0
|
|
140 CONTINUE
|
|
K = K + 1
|
|
FK = FK + 1.0D0
|
|
AK = (FHS-DNU2)/(FKS+FK)
|
|
BK = CK/(FK+1.0D0)
|
|
PT = P2
|
|
P2 = BK*P2 - AK*P1
|
|
P1 = PT
|
|
A(K) = AK
|
|
B(K) = BK
|
|
CK = CK + 2.0D0
|
|
FKS = FKS + FK + FK + 1.0D0
|
|
FHS = FHS + FK + FK
|
|
IF (ETEST.GT.FK*P1) GO TO 140
|
|
KK = K
|
|
S = 1.0D0
|
|
P1 = 0.0D0
|
|
P2 = 1.0D0
|
|
DO 150 I=1,K
|
|
PT = P2
|
|
P2 = (B(KK)*P2-P1)/A(KK)
|
|
P1 = PT
|
|
S = S + P2
|
|
KK = KK - 1
|
|
150 CONTINUE
|
|
S1 = COEF*(P2/S)
|
|
IF (INU.GT.0 .OR. N.GT.1) GO TO 160
|
|
GO TO 200
|
|
160 CONTINUE
|
|
S2 = S1*(X+DNU+0.5D0-P1/P2)/X
|
|
C
|
|
C FORWARD RECURSION ON THE THREE TERM RECURSION RELATION
|
|
C
|
|
170 CONTINUE
|
|
CK = (DNU+DNU+2.0D0)/X
|
|
IF (N.EQ.1) INU = INU - 1
|
|
IF (INU.GT.0) GO TO 180
|
|
IF (N.GT.1) GO TO 200
|
|
S1 = S2
|
|
GO TO 200
|
|
180 CONTINUE
|
|
DO 190 I=1,INU
|
|
ST = S2
|
|
S2 = CK*S2 + S1
|
|
S1 = ST
|
|
CK = CK + RX
|
|
190 CONTINUE
|
|
IF (N.EQ.1) S1 = S2
|
|
200 CONTINUE
|
|
IF (IFLAG.EQ.1) GO TO 220
|
|
Y(1) = S1
|
|
IF (N.EQ.1) RETURN
|
|
Y(2) = S2
|
|
IF (N.EQ.2) RETURN
|
|
DO 210 I=3,N
|
|
Y(I) = CK*Y(I-1) + Y(I-2)
|
|
CK = CK + RX
|
|
210 CONTINUE
|
|
RETURN
|
|
C IFLAG=1 CASES
|
|
220 CONTINUE
|
|
S = -X + LOG(S1)
|
|
Y(1) = 0.0D0
|
|
NZ = 1
|
|
IF (S.LT.-ELIM) GO TO 230
|
|
Y(1) = EXP(S)
|
|
NZ = 0
|
|
230 CONTINUE
|
|
IF (N.EQ.1) RETURN
|
|
S = -X + LOG(S2)
|
|
Y(2) = 0.0D0
|
|
NZ = NZ + 1
|
|
IF (S.LT.-ELIM) GO TO 240
|
|
NZ = NZ - 1
|
|
Y(2) = EXP(S)
|
|
240 CONTINUE
|
|
IF (N.EQ.2) RETURN
|
|
KK = 2
|
|
IF (NZ.LT.2) GO TO 260
|
|
DO 250 I=3,N
|
|
KK = I
|
|
ST = S2
|
|
S2 = CK*S2 + S1
|
|
S1 = ST
|
|
CK = CK + RX
|
|
S = -X + LOG(S2)
|
|
NZ = NZ + 1
|
|
Y(I) = 0.0D0
|
|
IF (S.LT.-ELIM) GO TO 250
|
|
Y(I) = EXP(S)
|
|
NZ = NZ - 1
|
|
GO TO 260
|
|
250 CONTINUE
|
|
RETURN
|
|
260 CONTINUE
|
|
IF (KK.EQ.N) RETURN
|
|
S2 = S2*CK + S1
|
|
CK = CK + RX
|
|
KK = KK + 1
|
|
Y(KK) = EXP(-X+LOG(S2))
|
|
IF (KK.EQ.N) RETURN
|
|
KK = KK + 1
|
|
DO 270 I=KK,N
|
|
Y(I) = CK*Y(I-1) + Y(I-2)
|
|
CK = CK + RX
|
|
270 CONTINUE
|
|
RETURN
|
|
C
|
|
C ASYMPTOTIC EXPANSION FOR LARGE X, X.GT.X2
|
|
C
|
|
C IFLAG=0 MEANS NO UNDERFLOW OCCURRED
|
|
C IFLAG=1 MEANS AN UNDERFLOW OCCURRED- COMPUTATION PROCEEDS WITH
|
|
C KODED=2 AND A TEST FOR ON SCALE VALUES IS MADE DURING FORWARD
|
|
C RECURSION
|
|
280 CONTINUE
|
|
NN = 2
|
|
IF (INU.EQ.0 .AND. N.EQ.1) NN = 1
|
|
DNU2 = DNU + DNU
|
|
FMU = 0.0D0
|
|
IF (ABS(DNU2).LT.TOL) GO TO 290
|
|
FMU = DNU2*DNU2
|
|
290 CONTINUE
|
|
EX = X*8.0D0
|
|
S2 = 0.0D0
|
|
DO 320 K=1,NN
|
|
S1 = S2
|
|
S = 1.0D0
|
|
AK = 0.0D0
|
|
CK = 1.0D0
|
|
SQK = 1.0D0
|
|
DK = EX
|
|
DO 300 J=1,30
|
|
CK = CK*(FMU-SQK)/DK
|
|
S = S + CK
|
|
DK = DK + EX
|
|
AK = AK + 8.0D0
|
|
SQK = SQK + AK
|
|
IF (ABS(CK).LT.TOL) GO TO 310
|
|
300 CONTINUE
|
|
310 S2 = S*COEF
|
|
FMU = FMU + 8.0D0*DNU + 4.0D0
|
|
320 CONTINUE
|
|
IF (NN.GT.1) GO TO 170
|
|
S1 = S2
|
|
GO TO 200
|
|
330 CONTINUE
|
|
KODED = 2
|
|
IFLAG = 1
|
|
GO TO 120
|
|
C
|
|
C FNU=HALF ODD INTEGER CASE
|
|
C
|
|
340 CONTINUE
|
|
S1 = COEF
|
|
S2 = COEF
|
|
GO TO 170
|
|
C
|
|
C
|
|
350 CALL XERMSG ('SLATEC', 'DBSKNU', 'X NOT GREATER THAN ZERO', 2, 1)
|
|
RETURN
|
|
360 CALL XERMSG ('SLATEC', 'DBSKNU', 'FNU NOT ZERO OR POSITIVE', 2,
|
|
+ 1)
|
|
RETURN
|
|
370 CALL XERMSG ('SLATEC', 'DBSKNU', 'KODE NOT 1 OR 2', 2, 1)
|
|
RETURN
|
|
380 CALL XERMSG ('SLATEC', 'DBSKNU', 'N NOT GREATER THAN 0', 2, 1)
|
|
RETURN
|
|
END
|