mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
433 lines
14 KiB
Fortran
433 lines
14 KiB
Fortran
*DECK DES
|
|
SUBROUTINE DES (F, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID, YPOUT,
|
|
+ YP, YY, WT, P, PHI, ALPHA, BETA, PSI, V, W, SIG, G, GI, H, EPS,
|
|
+ X, XOLD, HOLD, TOLD, DELSGN, TSTOP, TWOU, FOURU, START, PHASE1,
|
|
+ NORND, STIFF, INTOUT, NS, KORD, KOLD, INIT, KSTEPS, KLE4,
|
|
+ IQUIT, KPREV, IVC, IV, KGI, RPAR, IPAR)
|
|
C***BEGIN PROLOGUE DES
|
|
C***SUBSIDIARY
|
|
C***PURPOSE Subsidiary to DEABM
|
|
C***LIBRARY SLATEC
|
|
C***TYPE SINGLE PRECISION (DES-S, DDES-D)
|
|
C***AUTHOR Watts, H. A., (SNLA)
|
|
C***DESCRIPTION
|
|
C
|
|
C DEABM merely allocates storage for DES to relieve the user of the
|
|
C inconvenience of a long call list. Consequently DES is used as
|
|
C described in the comments for DEABM .
|
|
C
|
|
C***SEE ALSO DEABM
|
|
C***ROUTINES CALLED R1MACH, SINTRP, STEPS, XERMSG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 800501 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900328 Added TYPE section. (WRB)
|
|
C 900510 Convert XERRWV calls to XERMSG calls, replace GOTOs with
|
|
C IF-THEN-ELSEs. (RWC)
|
|
C 910722 Updated AUTHOR section. (ALS)
|
|
C***END PROLOGUE DES
|
|
C
|
|
LOGICAL STIFF,CRASH,START,PHASE1,NORND,INTOUT
|
|
C
|
|
DIMENSION Y(*),YY(*),WT(*),PHI(NEQ,16),P(*),YP(*),
|
|
1 YPOUT(*),PSI(12),ALPHA(12),BETA(12),SIG(13),V(12),W(12),G(13),
|
|
2 GI(11),IV(10),INFO(15),RTOL(*),ATOL(*),RPAR(*),IPAR(*)
|
|
CHARACTER*8 XERN1
|
|
CHARACTER*16 XERN3, XERN4
|
|
C
|
|
EXTERNAL F
|
|
C
|
|
C.......................................................................
|
|
C
|
|
C THE EXPENSE OF SOLVING THE PROBLEM IS MONITORED BY COUNTING THE
|
|
C NUMBER OF STEPS ATTEMPTED. WHEN THIS EXCEEDS MAXNUM, THE COUNTER
|
|
C IS RESET TO ZERO AND THE USER IS INFORMED ABOUT POSSIBLE EXCESSIVE
|
|
C WORK.
|
|
C
|
|
SAVE MAXNUM
|
|
DATA MAXNUM/500/
|
|
C
|
|
C.......................................................................
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT DES
|
|
IF (INFO(1) .EQ. 0) THEN
|
|
C
|
|
C ON THE FIRST CALL , PERFORM INITIALIZATION --
|
|
C DEFINE THE MACHINE UNIT ROUNDOFF QUANTITY U BY CALLING THE
|
|
C FUNCTION ROUTINE R1MACH. THE USER MUST MAKE SURE THAT THE
|
|
C VALUES SET IN R1MACH ARE RELEVANT TO THE COMPUTER BEING USED.
|
|
C
|
|
U=R1MACH(4)
|
|
C -- SET ASSOCIATED MACHINE DEPENDENT PARAMETERS
|
|
TWOU=2.*U
|
|
FOURU=4.*U
|
|
C -- SET TERMINATION FLAG
|
|
IQUIT=0
|
|
C -- SET INITIALIZATION INDICATOR
|
|
INIT=0
|
|
C -- SET COUNTER FOR ATTEMPTED STEPS
|
|
KSTEPS=0
|
|
C -- SET INDICATOR FOR INTERMEDIATE-OUTPUT
|
|
INTOUT= .FALSE.
|
|
C -- SET INDICATOR FOR STIFFNESS DETECTION
|
|
STIFF= .FALSE.
|
|
C -- SET STEP COUNTER FOR STIFFNESS DETECTION
|
|
KLE4=0
|
|
C -- SET INDICATORS FOR STEPS CODE
|
|
START= .TRUE.
|
|
PHASE1= .TRUE.
|
|
NORND= .TRUE.
|
|
C -- RESET INFO(1) FOR SUBSEQUENT CALLS
|
|
INFO(1)=1
|
|
ENDIF
|
|
C
|
|
C.......................................................................
|
|
C
|
|
C CHECK VALIDITY OF INPUT PARAMETERS ON EACH ENTRY
|
|
C
|
|
IF (INFO(1) .NE. 0 .AND. INFO(1) .NE. 1) THEN
|
|
WRITE (XERN1, '(I8)') INFO(1)
|
|
CALL XERMSG ('SLATEC', 'DES',
|
|
* 'IN DEABM, INFO(1) MUST BE ' //
|
|
* 'SET TO 0 FOR THE START OF A NEW PROBLEM, AND MUST BE ' //
|
|
* 'SET TO 1 FOLLOWING AN INTERRUPTED TASK. YOU ARE ' //
|
|
* 'ATTEMPTING TO CONTINUE THE INTEGRATION ILLEGALLY BY ' //
|
|
* 'CALLING THE CODE WITH INFO(1) = ' // XERN1, 3, 1)
|
|
IDID=-33
|
|
ENDIF
|
|
C
|
|
IF (INFO(2) .NE. 0 .AND. INFO(2) .NE. 1) THEN
|
|
WRITE (XERN1, '(I8)') INFO(2)
|
|
CALL XERMSG ('SLATEC', 'DES',
|
|
* 'IN DEABM, INFO(2) MUST BE 0 OR 1 ' //
|
|
* 'INDICATING SCALAR AND VECTOR ERROR TOLERANCES, ' //
|
|
* 'RESPECTIVELY. YOU HAVE CALLED THE CODE WITH INFO(2) = ' //
|
|
* XERN1, 4, 1)
|
|
IDID=-33
|
|
ENDIF
|
|
C
|
|
IF (INFO(3) .NE. 0 .AND. INFO(3) .NE. 1) THEN
|
|
WRITE (XERN1, '(I8)') INFO(3)
|
|
CALL XERMSG ('SLATEC', 'DES',
|
|
* 'IN DEABM, INFO(3) MUST BE 0 OR 1 ' //
|
|
* 'INDICATING THE INTERVAL OR INTERMEDIATE-OUTPUT MODE OF ' //
|
|
* 'INTEGRATION, RESPECTIVELY. YOU HAVE CALLED THE CODE ' //
|
|
* 'WITH INFO(3) = ' // XERN1, 5, 1)
|
|
IDID=-33
|
|
ENDIF
|
|
C
|
|
IF (INFO(4) .NE. 0 .AND. INFO(4) .NE. 1) THEN
|
|
WRITE (XERN1, '(I8)') INFO(4)
|
|
CALL XERMSG ('SLATEC', 'DES',
|
|
* 'IN DEABM, INFO(4) MUST BE 0 OR 1 ' //
|
|
* 'INDICATING WHETHER OR NOT THE INTEGRATION INTERVAL IS ' //
|
|
* 'TO BE RESTRICTED BY A POINT TSTOP. YOU HAVE CALLED ' //
|
|
* 'THE CODE WITH INFO(4) = ' // XERN1, 14, 1)
|
|
IDID=-33
|
|
ENDIF
|
|
C
|
|
IF (NEQ .LT. 1) THEN
|
|
WRITE (XERN1, '(I8)') NEQ
|
|
CALL XERMSG ('SLATEC', 'DES',
|
|
* 'IN DEABM, THE NUMBER OF EQUATIONS ' //
|
|
* 'NEQ MUST BE A POSITIVE INTEGER. YOU HAVE CALLED THE ' //
|
|
* 'CODE WITH NEQ = ' // XERN1, 6, 1)
|
|
IDID=-33
|
|
ENDIF
|
|
C
|
|
NRTOLP = 0
|
|
NATOLP = 0
|
|
DO 90 K=1,NEQ
|
|
IF (NRTOLP .EQ. 0 .AND. RTOL(K) .LT. 0.) THEN
|
|
WRITE (XERN1, '(I8)') K
|
|
WRITE (XERN3, '(1PE15.6)') RTOL(K)
|
|
CALL XERMSG ('SLATEC', 'DES',
|
|
* 'IN DEABM, THE RELATIVE ERROR ' //
|
|
* 'TOLERANCES RTOL MUST BE NON-NEGATIVE. YOU HAVE ' //
|
|
* 'CALLED THE CODE WITH RTOL(' // XERN1 // ') = ' //
|
|
* XERN3 // '. IN THE CASE OF VECTOR ERROR TOLERANCES, ' //
|
|
* 'NO FURTHER CHECKING OF RTOL COMPONENTS IS DONE.', 7, 1)
|
|
IDID = -33
|
|
NRTOLP = 1
|
|
ENDIF
|
|
C
|
|
IF (NATOLP .EQ. 0 .AND. ATOL(K) .LT. 0.) THEN
|
|
WRITE (XERN1, '(I8)') K
|
|
WRITE (XERN3, '(1PE15.6)') ATOL(K)
|
|
CALL XERMSG ('SLATEC', 'DES',
|
|
* 'IN DEABM, THE ABSOLUTE ERROR ' //
|
|
* 'TOLERANCES ATOL MUST BE NON-NEGATIVE. YOU HAVE ' //
|
|
* 'CALLED THE CODE WITH ATOL(' // XERN1 // ') = ' //
|
|
* XERN3 // '. IN THE CASE OF VECTOR ERROR TOLERANCES, ' //
|
|
* 'NO FURTHER CHECKING OF ATOL COMPONENTS IS DONE.', 8, 1)
|
|
IDID = -33
|
|
NATOLP = 1
|
|
ENDIF
|
|
C
|
|
IF (INFO(2) .EQ. 0) GO TO 100
|
|
IF (NATOLP.GT.0 .AND. NRTOLP.GT.0) GO TO 100
|
|
90 CONTINUE
|
|
C
|
|
100 IF (INFO(4) .EQ. 1) THEN
|
|
IF (SIGN(1.,TOUT-T) .NE. SIGN(1.,TSTOP-T)
|
|
1 .OR. ABS(TOUT-T) .GT. ABS(TSTOP-T)) THEN
|
|
WRITE (XERN3, '(1PE15.6)') TOUT
|
|
WRITE (XERN4, '(1PE15.6)') TSTOP
|
|
CALL XERMSG ('SLATEC', 'DES',
|
|
* 'IN DEABM, YOU HAVE CALLED THE ' //
|
|
* 'CODE WITH TOUT = ' // XERN3 // ' BUT YOU HAVE ' //
|
|
* 'ALSO TOLD THE CODE (INFO(4) = 1) NOT TO INTEGRATE ' //
|
|
* 'PAST THE POINT TSTOP = ' // XERN4 // ' THESE ' //
|
|
* 'INSTRUCTIONS CONFLICT.', 14, 1)
|
|
IDID=-33
|
|
ENDIF
|
|
ENDIF
|
|
C
|
|
C CHECK SOME CONTINUATION POSSIBILITIES
|
|
C
|
|
IF (INIT .NE. 0) THEN
|
|
IF (T .EQ. TOUT) THEN
|
|
WRITE (XERN3, '(1PE15.6)') T
|
|
CALL XERMSG ('SLATEC', 'DES',
|
|
* 'IN DEABM, YOU HAVE CALLED THE ' //
|
|
* 'CODE WITH T = TOUT = ' // XERN3 // '$$THIS IS NOT ' //
|
|
* 'ALLOWED ON CONTINUATION CALLS.', 9, 1)
|
|
IDID=-33
|
|
ENDIF
|
|
C
|
|
IF (T .NE. TOLD) THEN
|
|
WRITE (XERN3, '(1PE15.6)') TOLD
|
|
WRITE (XERN4, '(1PE15.6)') T
|
|
CALL XERMSG ('SLATEC', 'DES',
|
|
* 'IN DEABM, YOU HAVE CHANGED THE ' //
|
|
* 'VALUE OF T FROM ' // XERN3 // ' TO ' // XERN4 //
|
|
* ' THIS IS NOT ALLOWED ON CONTINUATION CALLS.', 10, 1)
|
|
IDID=-33
|
|
ENDIF
|
|
C
|
|
IF (INIT .NE. 1) THEN
|
|
IF (DELSGN*(TOUT-T) .LT. 0.) THEN
|
|
WRITE (XERN3, '(1PE15.6)') TOUT
|
|
CALL XERMSG ('SLATEC', 'DES',
|
|
* 'IN DEABM, BY CALLING THE ' //
|
|
* 'CODE WITH TOUT = ' // XERN3 // ' YOU ARE ' //
|
|
* 'ATTEMPTING TO CHANGE THE DIRECTION OF ' //
|
|
* 'INTEGRATION.$$THIS IS NOT ALLOWED WITHOUT ' //
|
|
* 'RESTARTING.', 11, 1)
|
|
IDID=-33
|
|
ENDIF
|
|
ENDIF
|
|
ENDIF
|
|
C
|
|
C INVALID INPUT DETECTED
|
|
C
|
|
IF (IDID .EQ. (-33)) THEN
|
|
IF (IQUIT .NE. (-33)) THEN
|
|
IQUIT = -33
|
|
INFO(1) = -1
|
|
ELSE
|
|
CALL XERMSG ('SLATEC', 'DES',
|
|
* 'IN DEABM, INVALID INPUT WAS ' //
|
|
* 'DETECTED ON SUCCESSIVE ENTRIES. IT IS IMPOSSIBLE ' //
|
|
* 'TO PROCEED BECAUSE YOU HAVE NOT CORRECTED THE ' //
|
|
* 'PROBLEM, SO EXECUTION IS BEING TERMINATED.', 12, 2)
|
|
ENDIF
|
|
RETURN
|
|
ENDIF
|
|
C
|
|
C.......................................................................
|
|
C
|
|
C RTOL = ATOL = 0. IS ALLOWED AS VALID INPUT AND INTERPRETED AS
|
|
C ASKING FOR THE MOST ACCURATE SOLUTION POSSIBLE. IN THIS CASE,
|
|
C THE RELATIVE ERROR TOLERANCE RTOL IS RESET TO THE SMALLEST VALUE
|
|
C FOURU WHICH IS LIKELY TO BE REASONABLE FOR THIS METHOD AND MACHINE
|
|
C
|
|
DO 180 K=1,NEQ
|
|
IF (RTOL(K)+ATOL(K) .GT. 0.) GO TO 170
|
|
RTOL(K)=FOURU
|
|
IDID=-2
|
|
170 IF (INFO(2) .EQ. 0) GO TO 190
|
|
180 CONTINUE
|
|
C
|
|
190 IF (IDID .NE. (-2)) GO TO 200
|
|
C RTOL=ATOL=0 ON INPUT, SO RTOL IS CHANGED TO A
|
|
C SMALL POSITIVE VALUE
|
|
INFO(1)=-1
|
|
RETURN
|
|
C
|
|
C BRANCH ON STATUS OF INITIALIZATION INDICATOR
|
|
C INIT=0 MEANS INITIAL DERIVATIVES AND NOMINAL STEP SIZE
|
|
C AND DIRECTION NOT YET SET
|
|
C INIT=1 MEANS NOMINAL STEP SIZE AND DIRECTION NOT YET SET
|
|
C INIT=2 MEANS NO FURTHER INITIALIZATION REQUIRED
|
|
C
|
|
200 IF (INIT .EQ. 0) GO TO 210
|
|
IF (INIT .EQ. 1) GO TO 220
|
|
GO TO 240
|
|
C
|
|
C.......................................................................
|
|
C
|
|
C MORE INITIALIZATION --
|
|
C -- EVALUATE INITIAL DERIVATIVES
|
|
C
|
|
210 INIT=1
|
|
A=T
|
|
CALL F(A,Y,YP,RPAR,IPAR)
|
|
IF (T .NE. TOUT) GO TO 220
|
|
IDID=2
|
|
DO 215 L = 1,NEQ
|
|
215 YPOUT(L) = YP(L)
|
|
TOLD=T
|
|
RETURN
|
|
C
|
|
C -- SET INDEPENDENT AND DEPENDENT VARIABLES
|
|
C X AND YY(*) FOR STEPS
|
|
C -- SET SIGN OF INTEGRATION DIRECTION
|
|
C -- INITIALIZE THE STEP SIZE
|
|
C
|
|
220 INIT = 2
|
|
X = T
|
|
DO 230 L = 1,NEQ
|
|
230 YY(L) = Y(L)
|
|
DELSGN = SIGN(1.0,TOUT-T)
|
|
H = SIGN(MAX(FOURU*ABS(X),ABS(TOUT-X)),TOUT-X)
|
|
C
|
|
C.......................................................................
|
|
C
|
|
C ON EACH CALL SET INFORMATION WHICH DETERMINES THE ALLOWED INTERVAL
|
|
C OF INTEGRATION BEFORE RETURNING WITH AN ANSWER AT TOUT
|
|
C
|
|
240 DEL = TOUT - T
|
|
ABSDEL = ABS(DEL)
|
|
C
|
|
C.......................................................................
|
|
C
|
|
C IF ALREADY PAST OUTPUT POINT, INTERPOLATE AND RETURN
|
|
C
|
|
250 IF(ABS(X-T) .LT. ABSDEL) GO TO 260
|
|
CALL SINTRP(X,YY,TOUT,Y,YPOUT,NEQ,KOLD,PHI,IVC,IV,KGI,GI,
|
|
1 ALPHA,G,W,XOLD,P)
|
|
IDID = 3
|
|
IF (X .NE. TOUT) GO TO 255
|
|
IDID = 2
|
|
INTOUT = .FALSE.
|
|
255 T = TOUT
|
|
TOLD = T
|
|
RETURN
|
|
C
|
|
C IF CANNOT GO PAST TSTOP AND SUFFICIENTLY CLOSE,
|
|
C EXTRAPOLATE AND RETURN
|
|
C
|
|
260 IF (INFO(4) .NE. 1) GO TO 280
|
|
IF (ABS(TSTOP-X) .GE. FOURU*ABS(X)) GO TO 280
|
|
DT = TOUT - X
|
|
DO 270 L = 1,NEQ
|
|
270 Y(L) = YY(L) + DT*YP(L)
|
|
CALL F(TOUT,Y,YPOUT,RPAR,IPAR)
|
|
IDID = 3
|
|
T = TOUT
|
|
TOLD = T
|
|
RETURN
|
|
C
|
|
280 IF (INFO(3) .EQ. 0 .OR. .NOT.INTOUT) GO TO 300
|
|
C
|
|
C INTERMEDIATE-OUTPUT MODE
|
|
C
|
|
IDID = 1
|
|
DO 290 L = 1,NEQ
|
|
Y(L)=YY(L)
|
|
290 YPOUT(L) = YP(L)
|
|
T = X
|
|
TOLD = T
|
|
INTOUT = .FALSE.
|
|
RETURN
|
|
C
|
|
C.......................................................................
|
|
C
|
|
C MONITOR NUMBER OF STEPS ATTEMPTED
|
|
C
|
|
300 IF (KSTEPS .LE. MAXNUM) GO TO 330
|
|
C
|
|
C A SIGNIFICANT AMOUNT OF WORK HAS BEEN EXPENDED
|
|
IDID=-1
|
|
KSTEPS=0
|
|
IF (.NOT. STIFF) GO TO 310
|
|
C
|
|
C PROBLEM APPEARS TO BE STIFF
|
|
IDID=-4
|
|
STIFF= .FALSE.
|
|
KLE4=0
|
|
C
|
|
310 DO 320 L = 1,NEQ
|
|
Y(L) = YY(L)
|
|
320 YPOUT(L) = YP(L)
|
|
T = X
|
|
TOLD = T
|
|
INFO(1) = -1
|
|
INTOUT = .FALSE.
|
|
RETURN
|
|
C
|
|
C.......................................................................
|
|
C
|
|
C LIMIT STEP SIZE, SET WEIGHT VECTOR AND TAKE A STEP
|
|
C
|
|
330 HA = ABS(H)
|
|
IF (INFO(4) .NE. 1) GO TO 340
|
|
HA = MIN(HA,ABS(TSTOP-X))
|
|
340 H = SIGN(HA,H)
|
|
EPS = 1.0
|
|
LTOL = 1
|
|
DO 350 L = 1,NEQ
|
|
IF (INFO(2) .EQ. 1) LTOL = L
|
|
WT(L) = RTOL(LTOL)*ABS(YY(L)) + ATOL(LTOL)
|
|
IF (WT(L) .LE. 0.0) GO TO 360
|
|
350 CONTINUE
|
|
GO TO 380
|
|
C
|
|
C RELATIVE ERROR CRITERION INAPPROPRIATE
|
|
360 IDID = -3
|
|
DO 370 L = 1,NEQ
|
|
Y(L) = YY(L)
|
|
370 YPOUT(L) = YP(L)
|
|
T = X
|
|
TOLD = T
|
|
INFO(1) = -1
|
|
INTOUT = .FALSE.
|
|
RETURN
|
|
C
|
|
380 CALL STEPS(F,NEQ,YY,X,H,EPS,WT,START,HOLD,KORD,KOLD,CRASH,PHI,P,
|
|
1 YP,PSI,ALPHA,BETA,SIG,V,W,G,PHASE1,NS,NORND,KSTEPS,
|
|
2 TWOU,FOURU,XOLD,KPREV,IVC,IV,KGI,GI,RPAR,IPAR)
|
|
C
|
|
C.......................................................................
|
|
C
|
|
IF(.NOT.CRASH) GO TO 420
|
|
C
|
|
C TOLERANCES TOO SMALL
|
|
IDID = -2
|
|
RTOL(1) = EPS*RTOL(1)
|
|
ATOL(1) = EPS*ATOL(1)
|
|
IF (INFO(2) .EQ. 0) GO TO 400
|
|
DO 390 L = 2,NEQ
|
|
RTOL(L) = EPS*RTOL(L)
|
|
390 ATOL(L) = EPS*ATOL(L)
|
|
400 DO 410 L = 1,NEQ
|
|
Y(L) = YY(L)
|
|
410 YPOUT(L) = YP(L)
|
|
T = X
|
|
TOLD = T
|
|
INFO(1) = -1
|
|
INTOUT = .FALSE.
|
|
RETURN
|
|
C
|
|
C (STIFFNESS TEST) COUNT NUMBER OF CONSECUTIVE STEPS TAKEN WITH THE
|
|
C ORDER OF THE METHOD BEING LESS OR EQUAL TO FOUR
|
|
C
|
|
420 KLE4 = KLE4 + 1
|
|
IF(KOLD .GT. 4) KLE4 = 0
|
|
IF(KLE4 .GE. 50) STIFF = .TRUE.
|
|
INTOUT = .TRUE.
|
|
GO TO 250
|
|
END
|