OpenLibm/slatec/dgtsl.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

132 lines
3.9 KiB
Fortran

*DECK DGTSL
SUBROUTINE DGTSL (N, C, D, E, B, INFO)
C***BEGIN PROLOGUE DGTSL
C***PURPOSE Solve a tridiagonal linear system.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D2A2A
C***TYPE DOUBLE PRECISION (SGTSL-S, DGTSL-D, CGTSL-C)
C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE, TRIDIAGONAL
C***AUTHOR Dongarra, J., (ANL)
C***DESCRIPTION
C
C DGTSL given a general tridiagonal matrix and a right hand
C side will find the solution.
C
C On Entry
C
C N INTEGER
C is the order of the tridiagonal matrix.
C
C C DOUBLE PRECISION(N)
C is the subdiagonal of the tridiagonal matrix.
C C(2) through C(N) should contain the subdiagonal.
C On output C is destroyed.
C
C D DOUBLE PRECISION(N)
C is the diagonal of the tridiagonal matrix.
C On output D is destroyed.
C
C E DOUBLE PRECISION(N)
C is the superdiagonal of the tridiagonal matrix.
C E(1) through E(N-1) should contain the superdiagonal.
C On output E is destroyed.
C
C B DOUBLE PRECISION(N)
C is the right hand side vector.
C
C On Return
C
C B is the solution vector.
C
C INFO INTEGER
C = 0 normal value.
C = K if the K-th element of the diagonal becomes
C exactly zero. The subroutine returns when
C this is detected.
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 780814 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DGTSL
INTEGER N,INFO
DOUBLE PRECISION C(*),D(*),E(*),B(*)
C
INTEGER K,KB,KP1,NM1,NM2
DOUBLE PRECISION T
C***FIRST EXECUTABLE STATEMENT DGTSL
INFO = 0
C(1) = D(1)
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 40
D(1) = E(1)
E(1) = 0.0D0
E(N) = 0.0D0
C
DO 30 K = 1, NM1
KP1 = K + 1
C
C FIND THE LARGEST OF THE TWO ROWS
C
IF (ABS(C(KP1)) .LT. ABS(C(K))) GO TO 10
C
C INTERCHANGE ROW
C
T = C(KP1)
C(KP1) = C(K)
C(K) = T
T = D(KP1)
D(KP1) = D(K)
D(K) = T
T = E(KP1)
E(KP1) = E(K)
E(K) = T
T = B(KP1)
B(KP1) = B(K)
B(K) = T
10 CONTINUE
C
C ZERO ELEMENTS
C
IF (C(K) .NE. 0.0D0) GO TO 20
INFO = K
GO TO 100
20 CONTINUE
T = -C(KP1)/C(K)
C(KP1) = D(KP1) + T*D(K)
D(KP1) = E(KP1) + T*E(K)
E(KP1) = 0.0D0
B(KP1) = B(KP1) + T*B(K)
30 CONTINUE
40 CONTINUE
IF (C(N) .NE. 0.0D0) GO TO 50
INFO = N
GO TO 90
50 CONTINUE
C
C BACK SOLVE
C
NM2 = N - 2
B(N) = B(N)/C(N)
IF (N .EQ. 1) GO TO 80
B(NM1) = (B(NM1) - D(NM1)*B(N))/C(NM1)
IF (NM2 .LT. 1) GO TO 70
DO 60 KB = 1, NM2
K = NM2 - KB + 1
B(K) = (B(K) - D(K)*B(K+1) - E(K)*B(K+2))/C(K)
60 CONTINUE
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE
C
RETURN
END