mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
345 lines
11 KiB
Fortran
345 lines
11 KiB
Fortran
*DECK DQC25S
|
|
SUBROUTINE DQC25S (F, A, B, BL, BR, ALFA, BETA, RI, RJ, RG, RH,
|
|
+ RESULT, ABSERR, RESASC, INTEGR, NEV)
|
|
C***BEGIN PROLOGUE DQC25S
|
|
C***PURPOSE To compute I = Integral of F*W over (BL,BR), with error
|
|
C estimate, where the weight function W has a singular
|
|
C behaviour of ALGEBRAICO-LOGARITHMIC type at the points
|
|
C A and/or B. (BL,BR) is a part of (A,B).
|
|
C***LIBRARY SLATEC (QUADPACK)
|
|
C***CATEGORY H2A2A2
|
|
C***TYPE DOUBLE PRECISION (QC25S-S, DQC25S-D)
|
|
C***KEYWORDS 25-POINT CLENSHAW-CURTIS INTEGRATION, QUADPACK, QUADRATURE
|
|
C***AUTHOR Piessens, Robert
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C de Doncker, Elise
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C***DESCRIPTION
|
|
C
|
|
C Integration rules for integrands having ALGEBRAICO-LOGARITHMIC
|
|
C end point singularities
|
|
C Standard fortran subroutine
|
|
C Double precision version
|
|
C
|
|
C PARAMETERS
|
|
C F - Double precision
|
|
C Function subprogram defining the integrand
|
|
C F(X). The actual name for F needs to be declared
|
|
C E X T E R N A L in the driver program.
|
|
C
|
|
C A - Double precision
|
|
C Left end point of the original interval
|
|
C
|
|
C B - Double precision
|
|
C Right end point of the original interval, B.GT.A
|
|
C
|
|
C BL - Double precision
|
|
C Lower limit of integration, BL.GE.A
|
|
C
|
|
C BR - Double precision
|
|
C Upper limit of integration, BR.LE.B
|
|
C
|
|
C ALFA - Double precision
|
|
C PARAMETER IN THE WEIGHT FUNCTION
|
|
C
|
|
C BETA - Double precision
|
|
C Parameter in the weight function
|
|
C
|
|
C RI,RJ,RG,RH - Double precision
|
|
C Modified CHEBYSHEV moments for the application
|
|
C of the generalized CLENSHAW-CURTIS
|
|
C method (computed in subroutine DQMOMO)
|
|
C
|
|
C RESULT - Double precision
|
|
C Approximation to the integral
|
|
C RESULT is computed by using a generalized
|
|
C CLENSHAW-CURTIS method if B1 = A or BR = B.
|
|
C in all other cases the 15-POINT KRONROD
|
|
C RULE is applied, obtained by optimal addition of
|
|
C Abscissae to the 7-POINT GAUSS RULE.
|
|
C
|
|
C ABSERR - Double precision
|
|
C Estimate of the modulus of the absolute error,
|
|
C which should equal or exceed ABS(I-RESULT)
|
|
C
|
|
C RESASC - Double precision
|
|
C Approximation to the integral of ABS(F*W-I/(B-A))
|
|
C
|
|
C INTEGR - Integer
|
|
C Which determines the weight function
|
|
C = 1 W(X) = (X-A)**ALFA*(B-X)**BETA
|
|
C = 2 W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(X-A)
|
|
C = 3 W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
|
|
C = 4 W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*
|
|
C LOG(B-X)
|
|
C
|
|
C NEV - Integer
|
|
C Number of integrand evaluations
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED DQCHEB, DQK15W, DQWGTS
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 810101 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890531 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C***END PROLOGUE DQC25S
|
|
C
|
|
DOUBLE PRECISION A,ABSERR,ALFA,B,BETA,BL,BR,CENTR,CHEB12,CHEB24,
|
|
1 DC,F,FACTOR,FIX,FVAL,HLGTH,RESABS,RESASC,RESULT,RES12,
|
|
2 RES24,RG,RH,RI,RJ,U,DQWGTS,X
|
|
INTEGER I,INTEGR,ISYM,NEV
|
|
C
|
|
DIMENSION CHEB12(13),CHEB24(25),FVAL(25),RG(25),RH(25),RI(25),
|
|
1 RJ(25),X(11)
|
|
C
|
|
EXTERNAL F, DQWGTS
|
|
C
|
|
C THE VECTOR X CONTAINS THE VALUES COS(K*PI/24)
|
|
C K = 1, ..., 11, TO BE USED FOR THE COMPUTATION OF THE
|
|
C CHEBYSHEV SERIES EXPANSION OF F.
|
|
C
|
|
SAVE X
|
|
DATA X(1),X(2),X(3),X(4),X(5),X(6),X(7),X(8),X(9),X(10),X(11)/
|
|
1 0.9914448613738104D+00, 0.9659258262890683D+00,
|
|
2 0.9238795325112868D+00, 0.8660254037844386D+00,
|
|
3 0.7933533402912352D+00, 0.7071067811865475D+00,
|
|
4 0.6087614290087206D+00, 0.5000000000000000D+00,
|
|
5 0.3826834323650898D+00, 0.2588190451025208D+00,
|
|
6 0.1305261922200516D+00/
|
|
C
|
|
C LIST OF MAJOR VARIABLES
|
|
C -----------------------
|
|
C
|
|
C FVAL - VALUE OF THE FUNCTION F AT THE POINTS
|
|
C (BR-BL)*0.5*COS(K*PI/24)+(BR+BL)*0.5
|
|
C K = 0, ..., 24
|
|
C CHEB12 - COEFFICIENTS OF THE CHEBYSHEV SERIES EXPANSION
|
|
C OF DEGREE 12, FOR THE FUNCTION F, IN THE
|
|
C INTERVAL (BL,BR)
|
|
C CHEB24 - COEFFICIENTS OF THE CHEBYSHEV SERIES EXPANSION
|
|
C OF DEGREE 24, FOR THE FUNCTION F, IN THE
|
|
C INTERVAL (BL,BR)
|
|
C RES12 - APPROXIMATION TO THE INTEGRAL OBTAINED FROM CHEB12
|
|
C RES24 - APPROXIMATION TO THE INTEGRAL OBTAINED FROM CHEB24
|
|
C DQWGTS - EXTERNAL FUNCTION SUBPROGRAM DEFINING
|
|
C THE FOUR POSSIBLE WEIGHT FUNCTIONS
|
|
C HLGTH - HALF-LENGTH OF THE INTERVAL (BL,BR)
|
|
C CENTR - MID POINT OF THE INTERVAL (BL,BR)
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT DQC25S
|
|
NEV = 25
|
|
IF(BL.EQ.A.AND.(ALFA.NE.0.0D+00.OR.INTEGR.EQ.2.OR.INTEGR.EQ.4))
|
|
1 GO TO 10
|
|
IF(BR.EQ.B.AND.(BETA.NE.0.0D+00.OR.INTEGR.EQ.3.OR.INTEGR.EQ.4))
|
|
1 GO TO 140
|
|
C
|
|
C IF A.GT.BL AND B.LT.BR, APPLY THE 15-POINT GAUSS-KRONROD
|
|
C SCHEME.
|
|
C
|
|
C
|
|
CALL DQK15W(F,DQWGTS,A,B,ALFA,BETA,INTEGR,BL,BR,
|
|
1 RESULT,ABSERR,RESABS,RESASC)
|
|
NEV = 15
|
|
GO TO 270
|
|
C
|
|
C THIS PART OF THE PROGRAM IS EXECUTED ONLY IF A = BL.
|
|
C ----------------------------------------------------
|
|
C
|
|
C COMPUTE THE CHEBYSHEV SERIES EXPANSION OF THE
|
|
C FOLLOWING FUNCTION
|
|
C F1 = (0.5*(B+B-BR-A)-0.5*(BR-A)*X)**BETA
|
|
C *F(0.5*(BR-A)*X+0.5*(BR+A))
|
|
C
|
|
10 HLGTH = 0.5D+00*(BR-BL)
|
|
CENTR = 0.5D+00*(BR+BL)
|
|
FIX = B-CENTR
|
|
FVAL(1) = 0.5D+00*F(HLGTH+CENTR)*(FIX-HLGTH)**BETA
|
|
FVAL(13) = F(CENTR)*(FIX**BETA)
|
|
FVAL(25) = 0.5D+00*F(CENTR-HLGTH)*(FIX+HLGTH)**BETA
|
|
DO 20 I=2,12
|
|
U = HLGTH*X(I-1)
|
|
ISYM = 26-I
|
|
FVAL(I) = F(U+CENTR)*(FIX-U)**BETA
|
|
FVAL(ISYM) = F(CENTR-U)*(FIX+U)**BETA
|
|
20 CONTINUE
|
|
FACTOR = HLGTH**(ALFA+0.1D+01)
|
|
RESULT = 0.0D+00
|
|
ABSERR = 0.0D+00
|
|
RES12 = 0.0D+00
|
|
RES24 = 0.0D+00
|
|
IF(INTEGR.GT.2) GO TO 70
|
|
CALL DQCHEB(X,FVAL,CHEB12,CHEB24)
|
|
C
|
|
C INTEGR = 1 (OR 2)
|
|
C
|
|
DO 30 I=1,13
|
|
RES12 = RES12+CHEB12(I)*RI(I)
|
|
RES24 = RES24+CHEB24(I)*RI(I)
|
|
30 CONTINUE
|
|
DO 40 I=14,25
|
|
RES24 = RES24+CHEB24(I)*RI(I)
|
|
40 CONTINUE
|
|
IF(INTEGR.EQ.1) GO TO 130
|
|
C
|
|
C INTEGR = 2
|
|
C
|
|
DC = LOG(BR-BL)
|
|
RESULT = RES24*DC
|
|
ABSERR = ABS((RES24-RES12)*DC)
|
|
RES12 = 0.0D+00
|
|
RES24 = 0.0D+00
|
|
DO 50 I=1,13
|
|
RES12 = RES12+CHEB12(I)*RG(I)
|
|
RES24 = RES12+CHEB24(I)*RG(I)
|
|
50 CONTINUE
|
|
DO 60 I=14,25
|
|
RES24 = RES24+CHEB24(I)*RG(I)
|
|
60 CONTINUE
|
|
GO TO 130
|
|
C
|
|
C COMPUTE THE CHEBYSHEV SERIES EXPANSION OF THE
|
|
C FOLLOWING FUNCTION
|
|
C F4 = F1*LOG(0.5*(B+B-BR-A)-0.5*(BR-A)*X)
|
|
C
|
|
70 FVAL(1) = FVAL(1)*LOG(FIX-HLGTH)
|
|
FVAL(13) = FVAL(13)*LOG(FIX)
|
|
FVAL(25) = FVAL(25)*LOG(FIX+HLGTH)
|
|
DO 80 I=2,12
|
|
U = HLGTH*X(I-1)
|
|
ISYM = 26-I
|
|
FVAL(I) = FVAL(I)*LOG(FIX-U)
|
|
FVAL(ISYM) = FVAL(ISYM)*LOG(FIX+U)
|
|
80 CONTINUE
|
|
CALL DQCHEB(X,FVAL,CHEB12,CHEB24)
|
|
C
|
|
C INTEGR = 3 (OR 4)
|
|
C
|
|
DO 90 I=1,13
|
|
RES12 = RES12+CHEB12(I)*RI(I)
|
|
RES24 = RES24+CHEB24(I)*RI(I)
|
|
90 CONTINUE
|
|
DO 100 I=14,25
|
|
RES24 = RES24+CHEB24(I)*RI(I)
|
|
100 CONTINUE
|
|
IF(INTEGR.EQ.3) GO TO 130
|
|
C
|
|
C INTEGR = 4
|
|
C
|
|
DC = LOG(BR-BL)
|
|
RESULT = RES24*DC
|
|
ABSERR = ABS((RES24-RES12)*DC)
|
|
RES12 = 0.0D+00
|
|
RES24 = 0.0D+00
|
|
DO 110 I=1,13
|
|
RES12 = RES12+CHEB12(I)*RG(I)
|
|
RES24 = RES24+CHEB24(I)*RG(I)
|
|
110 CONTINUE
|
|
DO 120 I=14,25
|
|
RES24 = RES24+CHEB24(I)*RG(I)
|
|
120 CONTINUE
|
|
130 RESULT = (RESULT+RES24)*FACTOR
|
|
ABSERR = (ABSERR+ABS(RES24-RES12))*FACTOR
|
|
GO TO 270
|
|
C
|
|
C THIS PART OF THE PROGRAM IS EXECUTED ONLY IF B = BR.
|
|
C ----------------------------------------------------
|
|
C
|
|
C COMPUTE THE CHEBYSHEV SERIES EXPANSION OF THE
|
|
C FOLLOWING FUNCTION
|
|
C F2 = (0.5*(B+BL-A-A)+0.5*(B-BL)*X)**ALFA
|
|
C *F(0.5*(B-BL)*X+0.5*(B+BL))
|
|
C
|
|
140 HLGTH = 0.5D+00*(BR-BL)
|
|
CENTR = 0.5D+00*(BR+BL)
|
|
FIX = CENTR-A
|
|
FVAL(1) = 0.5D+00*F(HLGTH+CENTR)*(FIX+HLGTH)**ALFA
|
|
FVAL(13) = F(CENTR)*(FIX**ALFA)
|
|
FVAL(25) = 0.5D+00*F(CENTR-HLGTH)*(FIX-HLGTH)**ALFA
|
|
DO 150 I=2,12
|
|
U = HLGTH*X(I-1)
|
|
ISYM = 26-I
|
|
FVAL(I) = F(U+CENTR)*(FIX+U)**ALFA
|
|
FVAL(ISYM) = F(CENTR-U)*(FIX-U)**ALFA
|
|
150 CONTINUE
|
|
FACTOR = HLGTH**(BETA+0.1D+01)
|
|
RESULT = 0.0D+00
|
|
ABSERR = 0.0D+00
|
|
RES12 = 0.0D+00
|
|
RES24 = 0.0D+00
|
|
IF(INTEGR.EQ.2.OR.INTEGR.EQ.4) GO TO 200
|
|
C
|
|
C INTEGR = 1 (OR 3)
|
|
C
|
|
CALL DQCHEB(X,FVAL,CHEB12,CHEB24)
|
|
DO 160 I=1,13
|
|
RES12 = RES12+CHEB12(I)*RJ(I)
|
|
RES24 = RES24+CHEB24(I)*RJ(I)
|
|
160 CONTINUE
|
|
DO 170 I=14,25
|
|
RES24 = RES24+CHEB24(I)*RJ(I)
|
|
170 CONTINUE
|
|
IF(INTEGR.EQ.1) GO TO 260
|
|
C
|
|
C INTEGR = 3
|
|
C
|
|
DC = LOG(BR-BL)
|
|
RESULT = RES24*DC
|
|
ABSERR = ABS((RES24-RES12)*DC)
|
|
RES12 = 0.0D+00
|
|
RES24 = 0.0D+00
|
|
DO 180 I=1,13
|
|
RES12 = RES12+CHEB12(I)*RH(I)
|
|
RES24 = RES24+CHEB24(I)*RH(I)
|
|
180 CONTINUE
|
|
DO 190 I=14,25
|
|
RES24 = RES24+CHEB24(I)*RH(I)
|
|
190 CONTINUE
|
|
GO TO 260
|
|
C
|
|
C COMPUTE THE CHEBYSHEV SERIES EXPANSION OF THE
|
|
C FOLLOWING FUNCTION
|
|
C F3 = F2*LOG(0.5*(B-BL)*X+0.5*(B+BL-A-A))
|
|
C
|
|
200 FVAL(1) = FVAL(1)*LOG(FIX+HLGTH)
|
|
FVAL(13) = FVAL(13)*LOG(FIX)
|
|
FVAL(25) = FVAL(25)*LOG(FIX-HLGTH)
|
|
DO 210 I=2,12
|
|
U = HLGTH*X(I-1)
|
|
ISYM = 26-I
|
|
FVAL(I) = FVAL(I)*LOG(U+FIX)
|
|
FVAL(ISYM) = FVAL(ISYM)*LOG(FIX-U)
|
|
210 CONTINUE
|
|
CALL DQCHEB(X,FVAL,CHEB12,CHEB24)
|
|
C
|
|
C INTEGR = 2 (OR 4)
|
|
C
|
|
DO 220 I=1,13
|
|
RES12 = RES12+CHEB12(I)*RJ(I)
|
|
RES24 = RES24+CHEB24(I)*RJ(I)
|
|
220 CONTINUE
|
|
DO 230 I=14,25
|
|
RES24 = RES24+CHEB24(I)*RJ(I)
|
|
230 CONTINUE
|
|
IF(INTEGR.EQ.2) GO TO 260
|
|
DC = LOG(BR-BL)
|
|
RESULT = RES24*DC
|
|
ABSERR = ABS((RES24-RES12)*DC)
|
|
RES12 = 0.0D+00
|
|
RES24 = 0.0D+00
|
|
C
|
|
C INTEGR = 4
|
|
C
|
|
DO 240 I=1,13
|
|
RES12 = RES12+CHEB12(I)*RH(I)
|
|
RES24 = RES24+CHEB24(I)*RH(I)
|
|
240 CONTINUE
|
|
DO 250 I=14,25
|
|
RES24 = RES24+CHEB24(I)*RH(I)
|
|
250 CONTINUE
|
|
260 RESULT = (RESULT+RES24)*FACTOR
|
|
ABSERR = (ABSERR+ABS(RES24-RES12))*FACTOR
|
|
270 RETURN
|
|
END
|