mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
137 lines
4.3 KiB
Fortran
137 lines
4.3 KiB
Fortran
*DECK DQMOMO
|
|
SUBROUTINE DQMOMO (ALFA, BETA, RI, RJ, RG, RH, INTEGR)
|
|
C***BEGIN PROLOGUE DQMOMO
|
|
C***PURPOSE This routine computes modified Chebyshev moments. The K-th
|
|
C modified Chebyshev moment is defined as the integral over
|
|
C (-1,1) of W(X)*T(K,X), where T(K,X) is the Chebyshev
|
|
C polynomial of degree K.
|
|
C***LIBRARY SLATEC (QUADPACK)
|
|
C***CATEGORY H2A2A1, C3A2
|
|
C***TYPE DOUBLE PRECISION (QMOMO-S, DQMOMO-D)
|
|
C***KEYWORDS MODIFIED CHEBYSHEV MOMENTS, QUADPACK, QUADRATURE
|
|
C***AUTHOR Piessens, Robert
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C de Doncker, Elise
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C***DESCRIPTION
|
|
C
|
|
C MODIFIED CHEBYSHEV MOMENTS
|
|
C STANDARD FORTRAN SUBROUTINE
|
|
C DOUBLE PRECISION VERSION
|
|
C
|
|
C PARAMETERS
|
|
C ALFA - Double precision
|
|
C Parameter in the weight function W(X), ALFA.GT.(-1)
|
|
C
|
|
C BETA - Double precision
|
|
C Parameter in the weight function W(X), BETA.GT.(-1)
|
|
C
|
|
C RI - Double precision
|
|
C Vector of dimension 25
|
|
C RI(K) is the integral over (-1,1) of
|
|
C (1+X)**ALFA*T(K-1,X), K = 1, ..., 25.
|
|
C
|
|
C RJ - Double precision
|
|
C Vector of dimension 25
|
|
C RJ(K) is the integral over (-1,1) of
|
|
C (1-X)**BETA*T(K-1,X), K = 1, ..., 25.
|
|
C
|
|
C RG - Double precision
|
|
C Vector of dimension 25
|
|
C RG(K) is the integral over (-1,1) of
|
|
C (1+X)**ALFA*LOG((1+X)/2)*T(K-1,X), K = 1, ..., 25.
|
|
C
|
|
C RH - Double precision
|
|
C Vector of dimension 25
|
|
C RH(K) is the integral over (-1,1) of
|
|
C (1-X)**BETA*LOG((1-X)/2)*T(K-1,X), K = 1, ..., 25.
|
|
C
|
|
C INTEGR - Integer
|
|
C Input parameter indicating the modified
|
|
C Moments to be computed
|
|
C INTEGR = 1 compute RI, RJ
|
|
C = 2 compute RI, RJ, RG
|
|
C = 3 compute RI, RJ, RH
|
|
C = 4 compute RI, RJ, RG, RH
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED (NONE)
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 820101 DATE WRITTEN
|
|
C 891009 Removed unreferenced statement label. (WRB)
|
|
C 891009 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C***END PROLOGUE DQMOMO
|
|
C
|
|
DOUBLE PRECISION ALFA,ALFP1,ALFP2,AN,ANM1,BETA,BETP1,BETP2,RALF,
|
|
1 RBET,RG,RH,RI,RJ
|
|
INTEGER I,IM1,INTEGR
|
|
C
|
|
DIMENSION RG(25),RH(25),RI(25),RJ(25)
|
|
C
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT DQMOMO
|
|
ALFP1 = ALFA+0.1D+01
|
|
BETP1 = BETA+0.1D+01
|
|
ALFP2 = ALFA+0.2D+01
|
|
BETP2 = BETA+0.2D+01
|
|
RALF = 0.2D+01**ALFP1
|
|
RBET = 0.2D+01**BETP1
|
|
C
|
|
C COMPUTE RI, RJ USING A FORWARD RECURRENCE RELATION.
|
|
C
|
|
RI(1) = RALF/ALFP1
|
|
RJ(1) = RBET/BETP1
|
|
RI(2) = RI(1)*ALFA/ALFP2
|
|
RJ(2) = RJ(1)*BETA/BETP2
|
|
AN = 0.2D+01
|
|
ANM1 = 0.1D+01
|
|
DO 20 I=3,25
|
|
RI(I) = -(RALF+AN*(AN-ALFP2)*RI(I-1))/(ANM1*(AN+ALFP1))
|
|
RJ(I) = -(RBET+AN*(AN-BETP2)*RJ(I-1))/(ANM1*(AN+BETP1))
|
|
ANM1 = AN
|
|
AN = AN+0.1D+01
|
|
20 CONTINUE
|
|
IF(INTEGR.EQ.1) GO TO 70
|
|
IF(INTEGR.EQ.3) GO TO 40
|
|
C
|
|
C COMPUTE RG USING A FORWARD RECURRENCE RELATION.
|
|
C
|
|
RG(1) = -RI(1)/ALFP1
|
|
RG(2) = -(RALF+RALF)/(ALFP2*ALFP2)-RG(1)
|
|
AN = 0.2D+01
|
|
ANM1 = 0.1D+01
|
|
IM1 = 2
|
|
DO 30 I=3,25
|
|
RG(I) = -(AN*(AN-ALFP2)*RG(IM1)-AN*RI(IM1)+ANM1*RI(I))/
|
|
1 (ANM1*(AN+ALFP1))
|
|
ANM1 = AN
|
|
AN = AN+0.1D+01
|
|
IM1 = I
|
|
30 CONTINUE
|
|
IF(INTEGR.EQ.2) GO TO 70
|
|
C
|
|
C COMPUTE RH USING A FORWARD RECURRENCE RELATION.
|
|
C
|
|
40 RH(1) = -RJ(1)/BETP1
|
|
RH(2) = -(RBET+RBET)/(BETP2*BETP2)-RH(1)
|
|
AN = 0.2D+01
|
|
ANM1 = 0.1D+01
|
|
IM1 = 2
|
|
DO 50 I=3,25
|
|
RH(I) = -(AN*(AN-BETP2)*RH(IM1)-AN*RJ(IM1)+
|
|
1 ANM1*RJ(I))/(ANM1*(AN+BETP1))
|
|
ANM1 = AN
|
|
AN = AN+0.1D+01
|
|
IM1 = I
|
|
50 CONTINUE
|
|
DO 60 I=2,25,2
|
|
RH(I) = -RH(I)
|
|
60 CONTINUE
|
|
70 DO 80 I=2,25,2
|
|
RJ(I) = -RJ(I)
|
|
80 CONTINUE
|
|
RETURN
|
|
END
|