mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
293 lines
6.7 KiB
Fortran
293 lines
6.7 KiB
Fortran
*DECK DU11US
|
|
SUBROUTINE DU11US (A, MDA, M, N, UB, DB, MODE, NP, KRANK, KSURE,
|
|
+ H, W, EB, IR, IC)
|
|
C***BEGIN PROLOGUE DU11US
|
|
C***SUBSIDIARY
|
|
C***PURPOSE Subsidiary to DULSIA
|
|
C***LIBRARY SLATEC
|
|
C***TYPE DOUBLE PRECISION (U11US-S, DU11US-D)
|
|
C***AUTHOR (UNKNOWN)
|
|
C***DESCRIPTION
|
|
C
|
|
C This routine performs an LQ factorization of the
|
|
C matrix A using Householder transformations. Row
|
|
C and column pivots are chosen to reduce the growth
|
|
C of round-off and to help detect possible rank
|
|
C deficiency.
|
|
C
|
|
C***SEE ALSO DULSIA
|
|
C***ROUTINES CALLED DAXPY, DDOT, DNRM2, DSCAL, DSWAP, IDAMAX, ISWAP,
|
|
C XERMSG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 810801 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
|
C 900328 Added TYPE section. (WRB)
|
|
C***END PROLOGUE DU11US
|
|
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|
DOUBLE PRECISION DDOT,DNRM2
|
|
DIMENSION A(MDA,*),UB(*),DB(*),H(*),W(*),EB(*)
|
|
INTEGER IC(*),IR(*)
|
|
C
|
|
C INITIALIZATION
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT DU11US
|
|
J=0
|
|
KRANK=M
|
|
DO 10 I=1,N
|
|
IC(I)=I
|
|
10 CONTINUE
|
|
DO 12 I=1,M
|
|
IR(I)=I
|
|
12 CONTINUE
|
|
C
|
|
C DETERMINE REL AND ABS ERROR VECTORS
|
|
C
|
|
C
|
|
C
|
|
C CALCULATE ROW LENGTH
|
|
C
|
|
DO 30 I=1,M
|
|
H(I)=DNRM2(N,A(I,1),MDA)
|
|
W(I)=H(I)
|
|
30 CONTINUE
|
|
C
|
|
C INITIALIZE ERROR BOUNDS
|
|
C
|
|
DO 40 I=1,M
|
|
EB(I)=MAX(DB(I),UB(I)*H(I))
|
|
UB(I)=EB(I)
|
|
DB(I)=0.0D0
|
|
40 CONTINUE
|
|
C
|
|
C DISCARD SELF DEPENDENT ROWS
|
|
C
|
|
I=1
|
|
50 IF(EB(I).GE.H(I)) GO TO 60
|
|
IF(I.EQ.KRANK) GO TO 70
|
|
I=I+1
|
|
GO TO 50
|
|
C
|
|
C MATRIX REDUCTION
|
|
C
|
|
60 CONTINUE
|
|
KK=KRANK
|
|
KRANK=KRANK-1
|
|
IF(MODE.EQ.0) RETURN
|
|
IF(I.GT.NP) GO TO 64
|
|
CALL XERMSG ('SLATEC', 'DU11US',
|
|
+ 'FIRST NP ROWS ARE LINEARLY DEPENDENT', 8, 0)
|
|
KRANK=I-1
|
|
RETURN
|
|
64 CONTINUE
|
|
IF(I.GT.KRANK) GO TO 70
|
|
CALL DSWAP(1,EB(I),1,EB(KK),1)
|
|
CALL DSWAP(1,UB(I),1,UB(KK),1)
|
|
CALL DSWAP(1,W(I),1,W(KK),1)
|
|
CALL DSWAP(1,H(I),1,H(KK),1)
|
|
CALL ISWAP(1,IR(I),1,IR(KK),1)
|
|
CALL DSWAP(N,A(I,1),MDA,A(KK,1),MDA)
|
|
GO TO 50
|
|
C
|
|
C TEST FOR ZERO RANK
|
|
C
|
|
70 IF(KRANK.GT.0) GO TO 80
|
|
KRANK=0
|
|
KSURE=0
|
|
RETURN
|
|
80 CONTINUE
|
|
C
|
|
C M A I N L O O P
|
|
C
|
|
110 CONTINUE
|
|
J=J+1
|
|
JP1=J+1
|
|
JM1=J-1
|
|
KZ=KRANK
|
|
IF(J.LE.NP) KZ=J
|
|
C
|
|
C EACH ROW HAS NN=N-J+1 COMPONENTS
|
|
C
|
|
NN=N-J+1
|
|
C
|
|
C UB DETERMINES ROW PIVOT
|
|
C
|
|
115 IMIN=J
|
|
IF(H(J).EQ.0.D0) GO TO 170
|
|
RMIN=UB(J)/H(J)
|
|
DO 120 I=J,KZ
|
|
IF(UB(I).GE.H(I)*RMIN) GO TO 120
|
|
RMIN=UB(I)/H(I)
|
|
IMIN=I
|
|
120 CONTINUE
|
|
C
|
|
C TEST FOR RANK DEFICIENCY
|
|
C
|
|
IF(RMIN.LT.1.0D0) GO TO 200
|
|
TT=(EB(IMIN)+ABS(DB(IMIN)))/H(IMIN)
|
|
IF(TT.GE.1.0D0) GO TO 170
|
|
C COMPUTE EXACT UB
|
|
DO 125 I=1,JM1
|
|
W(I)=A(IMIN,I)
|
|
125 CONTINUE
|
|
L=JM1
|
|
130 W(L)=W(L)/A(L,L)
|
|
IF(L.EQ.1) GO TO 150
|
|
LM1=L-1
|
|
DO 140 I=L,JM1
|
|
W(LM1)=W(LM1)-A(I,LM1)*W(I)
|
|
140 CONTINUE
|
|
L=LM1
|
|
GO TO 130
|
|
150 TT=EB(IMIN)
|
|
DO 160 I=1,JM1
|
|
TT=TT+ABS(W(I))*EB(I)
|
|
160 CONTINUE
|
|
UB(IMIN)=TT
|
|
IF(UB(IMIN)/H(IMIN).GE.1.0D0) GO TO 170
|
|
GO TO 200
|
|
C
|
|
C MATRIX REDUCTION
|
|
C
|
|
170 CONTINUE
|
|
KK=KRANK
|
|
KRANK=KRANK-1
|
|
KZ=KRANK
|
|
IF(MODE.EQ.0) RETURN
|
|
IF(J.GT.NP) GO TO 172
|
|
CALL XERMSG ('SLATEC', 'DU11US',
|
|
+ 'FIRST NP ROWS ARE LINEARLY DEPENDENT', 8, 0)
|
|
KRANK=J-1
|
|
RETURN
|
|
172 CONTINUE
|
|
IF(IMIN.GT.KRANK) GO TO 180
|
|
CALL ISWAP(1,IR(IMIN),1,IR(KK),1)
|
|
CALL DSWAP(N,A(IMIN,1),MDA,A(KK,1),MDA)
|
|
CALL DSWAP(1,EB(IMIN),1,EB(KK),1)
|
|
CALL DSWAP(1,UB(IMIN),1,UB(KK),1)
|
|
CALL DSWAP(1,DB(IMIN),1,DB(KK),1)
|
|
CALL DSWAP(1,W(IMIN),1,W(KK),1)
|
|
CALL DSWAP(1,H(IMIN),1,H(KK),1)
|
|
180 IF(J.GT.KRANK) GO TO 300
|
|
GO TO 115
|
|
C
|
|
C ROW PIVOT
|
|
C
|
|
200 IF(IMIN.EQ.J) GO TO 230
|
|
CALL DSWAP(1,H(J),1,H(IMIN),1)
|
|
CALL DSWAP(N,A(J,1),MDA,A(IMIN,1),MDA)
|
|
CALL DSWAP(1,EB(J),1,EB(IMIN),1)
|
|
CALL DSWAP(1,UB(J),1,UB(IMIN),1)
|
|
CALL DSWAP(1,DB(J),1,DB(IMIN),1)
|
|
CALL DSWAP(1,W(J),1,W(IMIN),1)
|
|
CALL ISWAP(1,IR(J),1,IR(IMIN),1)
|
|
C
|
|
C COLUMN PIVOT
|
|
C
|
|
230 CONTINUE
|
|
JMAX=IDAMAX(NN,A(J,J),MDA)
|
|
JMAX=JMAX+J-1
|
|
IF(JMAX.EQ.J) GO TO 240
|
|
CALL DSWAP(M,A(1,J),1,A(1,JMAX),1)
|
|
CALL ISWAP(1,IC(J),1,IC(JMAX),1)
|
|
240 CONTINUE
|
|
C
|
|
C APPLY HOUSEHOLDER TRANSFORMATION
|
|
C
|
|
TN=DNRM2(NN,A(J,J),MDA)
|
|
IF(TN.EQ.0.0D0) GO TO 170
|
|
IF(A(J,J).NE.0.0D0) TN=SIGN(TN,A(J,J))
|
|
CALL DSCAL(NN,1.0D0/TN,A(J,J),MDA)
|
|
A(J,J)=A(J,J)+1.0D0
|
|
IF(J.EQ.M) GO TO 250
|
|
DO 248 I=JP1,M
|
|
BB=-DDOT(NN,A(J,J),MDA,A(I,J),MDA)/A(J,J)
|
|
CALL DAXPY(NN,BB,A(J,J),MDA,A(I,J),MDA)
|
|
IF(I.LE.NP) GO TO 248
|
|
IF(H(I).EQ.0.0D0) GO TO 248
|
|
TT=1.0D0-(ABS(A(I,J))/H(I))**2
|
|
TT=MAX(TT,0.0D0)
|
|
T=TT
|
|
TT=1.0D0+.05D0*TT*(H(I)/W(I))**2
|
|
IF(TT.EQ.1.0D0) GO TO 244
|
|
H(I)=H(I)*SQRT(T)
|
|
GO TO 246
|
|
244 CONTINUE
|
|
H(I)=DNRM2(N-J,A(I,J+1),MDA)
|
|
W(I)=H(I)
|
|
246 CONTINUE
|
|
248 CONTINUE
|
|
250 CONTINUE
|
|
H(J)=A(J,J)
|
|
A(J,J)=-TN
|
|
C
|
|
C
|
|
C UPDATE UB, DB
|
|
C
|
|
UB(J)=UB(J)/ABS(A(J,J))
|
|
DB(J)=(SIGN(EB(J),DB(J))+DB(J))/A(J,J)
|
|
IF(J.EQ.KRANK) GO TO 300
|
|
DO 260 I=JP1,KRANK
|
|
UB(I)=UB(I)+ABS(A(I,J))*UB(J)
|
|
DB(I)=DB(I)-A(I,J)*DB(J)
|
|
260 CONTINUE
|
|
GO TO 110
|
|
C
|
|
C E N D M A I N L O O P
|
|
C
|
|
300 CONTINUE
|
|
C
|
|
C COMPUTE KSURE
|
|
C
|
|
KM1=KRANK-1
|
|
DO 318 I=1,KM1
|
|
IS=0
|
|
KMI=KRANK-I
|
|
DO 315 II=1,KMI
|
|
IF(UB(II).LE.UB(II+1)) GO TO 315
|
|
IS=1
|
|
TEMP=UB(II)
|
|
UB(II)=UB(II+1)
|
|
UB(II+1)=TEMP
|
|
315 CONTINUE
|
|
IF(IS.EQ.0) GO TO 320
|
|
318 CONTINUE
|
|
320 CONTINUE
|
|
KSURE=0
|
|
SUM=0.0D0
|
|
DO 328 I=1,KRANK
|
|
R2=UB(I)*UB(I)
|
|
IF(R2+SUM.GE.1.0D0) GO TO 330
|
|
SUM=SUM+R2
|
|
KSURE=KSURE+1
|
|
328 CONTINUE
|
|
330 CONTINUE
|
|
C
|
|
C IF SYSTEM IS OF REDUCED RANK AND MODE = 2
|
|
C COMPLETE THE DECOMPOSITION FOR SHORTEST LEAST SQUARES SOLUTION
|
|
C
|
|
IF(KRANK.EQ.M .OR. MODE.LT.2) GO TO 360
|
|
MMK=M-KRANK
|
|
KP1=KRANK+1
|
|
I=KRANK
|
|
340 TN=DNRM2(MMK,A(KP1,I),1)/A(I,I)
|
|
TN=A(I,I)*SQRT(1.0D0+TN*TN)
|
|
CALL DSCAL(MMK,1.0D0/TN,A(KP1,I),1)
|
|
W(I)=A(I,I)/TN+1.0D0
|
|
A(I,I)=-TN
|
|
IF(I.EQ.1) GO TO 350
|
|
IM1=I-1
|
|
DO 345 II=1,IM1
|
|
TT=-DDOT(MMK,A(KP1,II),1,A(KP1,I),1)/W(I)
|
|
TT=TT-A(I,II)
|
|
CALL DAXPY(MMK,TT,A(KP1,I),1,A(KP1,II),1)
|
|
A(I,II)=A(I,II)+TT*W(I)
|
|
345 CONTINUE
|
|
I=I-1
|
|
GO TO 340
|
|
350 CONTINUE
|
|
360 CONTINUE
|
|
RETURN
|
|
END
|