mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
323 lines
12 KiB
Fortran
323 lines
12 KiB
Fortran
*DECK DULSIA
|
|
SUBROUTINE DULSIA (A, MDA, M, N, B, MDB, NB, RE, AE, KEY, MODE,
|
|
+ NP, KRANK, KSURE, RNORM, W, LW, IWORK, LIW, INFO)
|
|
C***BEGIN PROLOGUE DULSIA
|
|
C***PURPOSE Solve an underdetermined linear system of equations by
|
|
C performing an LQ factorization of the matrix using
|
|
C Householder transformations. Emphasis is put on detecting
|
|
C possible rank deficiency.
|
|
C***LIBRARY SLATEC
|
|
C***CATEGORY D9
|
|
C***TYPE DOUBLE PRECISION (ULSIA-S, DULSIA-D)
|
|
C***KEYWORDS LINEAR LEAST SQUARES, LQ FACTORIZATION,
|
|
C UNDERDETERMINED LINEAR SYSTEM
|
|
C***AUTHOR Manteuffel, T. A., (LANL)
|
|
C***DESCRIPTION
|
|
C
|
|
C DULSIA computes the minimal length solution(s) to the problem AX=B
|
|
C where A is an M by N matrix with M.LE.N and B is the M by NB
|
|
C matrix of right hand sides. User input bounds on the uncertainty
|
|
C in the elements of A are used to detect numerical rank deficiency.
|
|
C The algorithm employs a row and column pivot strategy to
|
|
C minimize the growth of uncertainty and round-off errors.
|
|
C
|
|
C DULSIA requires (MDA+1)*N + (MDB+1)*NB + 6*M dimensioned space
|
|
C
|
|
C ******************************************************************
|
|
C * *
|
|
C * WARNING - All input arrays are changed on exit. *
|
|
C * *
|
|
C ******************************************************************
|
|
C
|
|
C Input.. All TYPE REAL variables are DOUBLE PRECISION
|
|
C
|
|
C A(,) Linear coefficient matrix of AX=B, with MDA the
|
|
C MDA,M,N actual first dimension of A in the calling program.
|
|
C M is the row dimension (no. of EQUATIONS of the
|
|
C problem) and N the col dimension (no. of UNKNOWNS).
|
|
C Must have MDA.GE.M and M.LE.N.
|
|
C
|
|
C B(,) Right hand side(s), with MDB the actual first
|
|
C MDB,NB dimension of B in the calling program. NB is the
|
|
C number of M by 1 right hand sides. Since the
|
|
C solution is returned in B, must have MDB.GE.N. If
|
|
C NB = 0, B is never accessed.
|
|
C
|
|
C ******************************************************************
|
|
C * *
|
|
C * Note - Use of RE and AE are what make this *
|
|
C * code significantly different from *
|
|
C * other linear least squares solvers. *
|
|
C * However, the inexperienced user is *
|
|
C * advised to set RE=0.,AE=0.,KEY=0. *
|
|
C * *
|
|
C ******************************************************************
|
|
C
|
|
C RE(),AE(),KEY
|
|
C RE() RE() is a vector of length N such that RE(I) is
|
|
C the maximum relative uncertainty in row I of
|
|
C the matrix A. The values of RE() must be between
|
|
C 0 and 1. A minimum of 10*machine precision will
|
|
C be enforced.
|
|
C
|
|
C AE() AE() is a vector of length N such that AE(I) is
|
|
C the maximum absolute uncertainty in row I of
|
|
C the matrix A. The values of AE() must be greater
|
|
C than or equal to 0.
|
|
C
|
|
C KEY For ease of use, RE and AE may be input as either
|
|
C vectors or scalars. If a scalar is input, the algo-
|
|
C rithm will use that value for each column of A.
|
|
C The parameter KEY indicates whether scalars or
|
|
C vectors are being input.
|
|
C KEY=0 RE scalar AE scalar
|
|
C KEY=1 RE vector AE scalar
|
|
C KEY=2 RE scalar AE vector
|
|
C KEY=3 RE vector AE vector
|
|
C
|
|
C
|
|
C MODE The integer MODE indicates how the routine
|
|
C is to react if rank deficiency is detected.
|
|
C If MODE = 0 return immediately, no solution
|
|
C 1 compute truncated solution
|
|
C 2 compute minimal length least squares sol
|
|
C The inexperienced user is advised to set MODE=0
|
|
C
|
|
C NP The first NP rows of A will not be interchanged
|
|
C with other rows even though the pivot strategy
|
|
C would suggest otherwise.
|
|
C The inexperienced user is advised to set NP=0.
|
|
C
|
|
C WORK() A real work array dimensioned 5*M. However, if
|
|
C RE or AE have been specified as vectors, dimension
|
|
C WORK 4*M. If both RE and AE have been specified
|
|
C as vectors, dimension WORK 3*M.
|
|
C
|
|
C LW Actual dimension of WORK
|
|
C
|
|
C IWORK() Integer work array dimensioned at least N+M.
|
|
C
|
|
C LIW Actual dimension of IWORK.
|
|
C
|
|
C
|
|
C INFO Is a flag which provides for the efficient
|
|
C solution of subsequent problems involving the
|
|
C same A but different B.
|
|
C If INFO = 0 original call
|
|
C INFO = 1 subsequent calls
|
|
C On subsequent calls, the user must supply A, KRANK,
|
|
C LW, IWORK, LIW, and the first 2*M locations of WORK
|
|
C as output by the original call to DULSIA. MODE must
|
|
C be equal to the value of MODE in the original call.
|
|
C If MODE.LT.2, only the first N locations of WORK
|
|
C are accessed. AE, RE, KEY, and NP are not accessed.
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C Output..All TYPE REAL variables are DOUBLE PRECISION
|
|
C
|
|
C A(,) Contains the lower triangular part of the reduced
|
|
C matrix and the transformation information. It togeth
|
|
C with the first M elements of WORK (see below)
|
|
C completely specify the LQ factorization of A.
|
|
C
|
|
C B(,) Contains the N by NB solution matrix for X.
|
|
C
|
|
C KRANK,KSURE The numerical rank of A, based upon the relative
|
|
C and absolute bounds on uncertainty, is bounded
|
|
C above by KRANK and below by KSURE. The algorithm
|
|
C returns a solution based on KRANK. KSURE provides
|
|
C an indication of the precision of the rank.
|
|
C
|
|
C RNORM() Contains the Euclidean length of the NB residual
|
|
C vectors B(I)-AX(I), I=1,NB. If the matrix A is of
|
|
C full rank, then RNORM=0.0.
|
|
C
|
|
C WORK() The first M locations of WORK contain values
|
|
C necessary to reproduce the Householder
|
|
C transformation.
|
|
C
|
|
C IWORK() The first N locations contain the order in
|
|
C which the columns of A were used. The next
|
|
C M locations contain the order in which the
|
|
C rows of A were used.
|
|
C
|
|
C INFO Flag to indicate status of computation on completion
|
|
C -1 Parameter error(s)
|
|
C 0 - Rank deficient, no solution
|
|
C 1 - Rank deficient, truncated solution
|
|
C 2 - Rank deficient, minimal length least squares sol
|
|
C 3 - Numerical rank 0, zero solution
|
|
C 4 - Rank .LT. NP
|
|
C 5 - Full rank
|
|
C
|
|
C***REFERENCES T. Manteuffel, An interval analysis approach to rank
|
|
C determination in linear least squares problems,
|
|
C Report SAND80-0655, Sandia Laboratories, June 1980.
|
|
C***ROUTINES CALLED D1MACH, DU11US, DU12US, XERMSG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 810801 DATE WRITTEN
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 891006 Cosmetic changes to prologue. (WRB)
|
|
C 891009 Removed unreferenced variable. (WRB)
|
|
C 891009 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
|
C 900510 Fixed an error message. (RWC)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE DULSIA
|
|
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|
DOUBLE PRECISION D1MACH
|
|
DIMENSION A(MDA,*),B(MDB,*),RE(*),AE(*),RNORM(*),W(*)
|
|
INTEGER IWORK(*)
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT DULSIA
|
|
IF(INFO.LT.0 .OR. INFO.GT.1) GO TO 514
|
|
IT=INFO
|
|
INFO=-1
|
|
IF(NB.EQ.0 .AND. IT.EQ.1) GO TO 501
|
|
IF(M.LT.1) GO TO 502
|
|
IF(N.LT.1) GO TO 503
|
|
IF(N.LT.M) GO TO 504
|
|
IF(MDA.LT.M) GO TO 505
|
|
IF(LIW.LT.M+N) GO TO 506
|
|
IF(MODE.LT.0 .OR. MODE.GT.3) GO TO 515
|
|
IF(NB.EQ.0) GO TO 4
|
|
IF(NB.LT.0) GO TO 507
|
|
IF(MDB.LT.N) GO TO 508
|
|
IF(IT.EQ.0) GO TO 4
|
|
GO TO 400
|
|
4 IF(KEY.LT.0.OR.KEY.GT.3) GO TO 509
|
|
IF(KEY.EQ.0 .AND. LW.LT.5*M) GO TO 510
|
|
IF(KEY.EQ.1 .AND. LW.LT.4*M) GO TO 510
|
|
IF(KEY.EQ.2 .AND. LW.LT.4*M) GO TO 510
|
|
IF(KEY.EQ.3 .AND. LW.LT.3*M) GO TO 510
|
|
IF(NP.LT.0 .OR. NP.GT.M) GO TO 516
|
|
C
|
|
EPS=10.*D1MACH(3)
|
|
M1=1
|
|
M2=M1+M
|
|
M3=M2+M
|
|
M4=M3+M
|
|
M5=M4+M
|
|
C
|
|
IF(KEY.EQ.1) GO TO 100
|
|
IF(KEY.EQ.2) GO TO 200
|
|
IF(KEY.EQ.3) GO TO 300
|
|
C
|
|
IF(RE(1).LT.0.D00) GO TO 511
|
|
IF(RE(1).GT.1.0D0) GO TO 512
|
|
IF(RE(1).LT.EPS) RE(1)=EPS
|
|
IF(AE(1).LT.0.0D0) GO TO 513
|
|
DO 20 I=1,M
|
|
W(M4-1+I)=RE(1)
|
|
W(M5-1+I)=AE(1)
|
|
20 CONTINUE
|
|
CALL DU11US(A,MDA,M,N,W(M4),W(M5),MODE,NP,KRANK,KSURE,
|
|
1 W(M1),W(M2),W(M3),IWORK(M1),IWORK(M2))
|
|
GO TO 400
|
|
C
|
|
100 CONTINUE
|
|
IF(AE(1).LT.0.0D0) GO TO 513
|
|
DO 120 I=1,M
|
|
IF(RE(I).LT.0.0D0) GO TO 511
|
|
IF(RE(I).GT.1.0D0) GO TO 512
|
|
IF(RE(I).LT.EPS) RE(I)=EPS
|
|
W(M4-1+I)=AE(1)
|
|
120 CONTINUE
|
|
CALL DU11US(A,MDA,M,N,RE,W(M4),MODE,NP,KRANK,KSURE,
|
|
1 W(M1),W(M2),W(M3),IWORK(M1),IWORK(M2))
|
|
GO TO 400
|
|
C
|
|
200 CONTINUE
|
|
IF(RE(1).LT.0.0D0) GO TO 511
|
|
IF(RE(1).GT.1.0D0) GO TO 512
|
|
IF(RE(1).LT.EPS) RE(1)=EPS
|
|
DO 220 I=1,M
|
|
W(M4-1+I)=RE(1)
|
|
IF(AE(I).LT.0.0D0) GO TO 513
|
|
220 CONTINUE
|
|
CALL DU11US(A,MDA,M,N,W(M4),AE,MODE,NP,KRANK,KSURE,
|
|
1 W(M1),W(M2),W(M3),IWORK(M1),IWORK(M2))
|
|
GO TO 400
|
|
C
|
|
300 CONTINUE
|
|
DO 320 I=1,M
|
|
IF(RE(I).LT.0.0D0) GO TO 511
|
|
IF(RE(I).GT.1.0D0) GO TO 512
|
|
IF(RE(I).LT.EPS) RE(I)=EPS
|
|
IF(AE(I).LT.0.0D0) GO TO 513
|
|
320 CONTINUE
|
|
CALL DU11US(A,MDA,M,N,RE,AE,MODE,NP,KRANK,KSURE,
|
|
1 W(M1),W(M2),W(M3),IWORK(M1),IWORK(M2))
|
|
C
|
|
C DETERMINE INFO
|
|
C
|
|
400 IF(KRANK.NE.M) GO TO 402
|
|
INFO=5
|
|
GO TO 410
|
|
402 IF(KRANK.NE.0) GO TO 404
|
|
INFO=3
|
|
GO TO 410
|
|
404 IF(KRANK.GE.NP) GO TO 406
|
|
INFO=4
|
|
RETURN
|
|
406 INFO=MODE
|
|
IF(MODE.EQ.0) RETURN
|
|
410 IF(NB.EQ.0) RETURN
|
|
C
|
|
C
|
|
C SOLUTION PHASE
|
|
C
|
|
M1=1
|
|
M2=M1+M
|
|
M3=M2+M
|
|
IF(INFO.EQ.2) GO TO 420
|
|
IF(LW.LT.M2-1) GO TO 510
|
|
CALL DU12US(A,MDA,M,N,B,MDB,NB,MODE,KRANK,
|
|
1 RNORM,W(M1),W(M1),IWORK(M1),IWORK(M2))
|
|
RETURN
|
|
C
|
|
420 IF(LW.LT.M3-1) GO TO 510
|
|
CALL DU12US(A,MDA,M,N,B,MDB,NB,MODE,KRANK,
|
|
1 RNORM,W(M1),W(M2),IWORK(M1),IWORK(M2))
|
|
RETURN
|
|
C
|
|
C ERROR MESSAGES
|
|
C
|
|
501 CALL XERMSG ('SLATEC', 'DULSIA',
|
|
+ 'SOLUTION ONLY (INFO=1) BUT NO RIGHT HAND SIDE (NB=0)', 1, 0)
|
|
RETURN
|
|
502 CALL XERMSG ('SLATEC', 'DULSIA', 'M.LT.1', 2, 1)
|
|
RETURN
|
|
503 CALL XERMSG ('SLATEC', 'DULSIA', 'N.LT.1', 2, 1)
|
|
RETURN
|
|
504 CALL XERMSG ('SLATEC', 'DULSIA', 'N.LT.M', 2, 1)
|
|
RETURN
|
|
505 CALL XERMSG ('SLATEC', 'DULSIA', 'MDA.LT.M', 2, 1)
|
|
RETURN
|
|
506 CALL XERMSG ('SLATEC', 'DULSIA', 'LIW.LT.M+N', 2, 1)
|
|
RETURN
|
|
507 CALL XERMSG ('SLATEC', 'DULSIA', 'NB.LT.0', 2, 1)
|
|
RETURN
|
|
508 CALL XERMSG ('SLATEC', 'DULSIA', 'MDB.LT.N', 2, 1)
|
|
RETURN
|
|
509 CALL XERMSG ('SLATEC', 'DULSIA', 'KEY OUT OF RANGE', 2, 1)
|
|
RETURN
|
|
510 CALL XERMSG ('SLATEC', 'DULSIA', 'INSUFFICIENT WORK SPACE', 8, 1)
|
|
INFO=-1
|
|
RETURN
|
|
511 CALL XERMSG ('SLATEC', 'DULSIA', 'RE(I) .LT. 0', 2, 1)
|
|
RETURN
|
|
512 CALL XERMSG ('SLATEC', 'DULSIA', 'RE(I) .GT. 1', 2, 1)
|
|
RETURN
|
|
513 CALL XERMSG ('SLATEC', 'DULSIA', 'AE(I) .LT. 0', 2, 1)
|
|
RETURN
|
|
514 CALL XERMSG ('SLATEC', 'DULSIA', 'INFO OUT OF RANGE', 2, 1)
|
|
RETURN
|
|
515 CALL XERMSG ('SLATEC', 'DULSIA', 'MODE OUT OF RANGE', 2, 1)
|
|
RETURN
|
|
516 CALL XERMSG ('SLATEC', 'DULSIA', 'NP OUT OF RANGE', 2, 1)
|
|
RETURN
|
|
END
|