mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
119 lines
3.2 KiB
Fortran
119 lines
3.2 KiB
Fortran
*DECK PRODP
|
|
SUBROUTINE PRODP (ND, BD, NM1, BM1, NM2, BM2, NA, AA, X, Y, M, A,
|
|
+ B, C, D, U, W)
|
|
C***BEGIN PROLOGUE PRODP
|
|
C***SUBSIDIARY
|
|
C***PURPOSE Subsidiary to BLKTRI
|
|
C***LIBRARY SLATEC
|
|
C***TYPE SINGLE PRECISION (PRODP-S, PROCP-C)
|
|
C***AUTHOR (UNKNOWN)
|
|
C***DESCRIPTION
|
|
C
|
|
C PRODP applies a sequence of matrix operations to the vector X and
|
|
C stores the result in Y (periodic boundary conditions).
|
|
C
|
|
C BD,BM1,BM2 are arrays containing roots of certain B polynomials.
|
|
C ND,NM1,NM2 are the lengths of the arrays BD,BM1,BM2 respectively.
|
|
C AA Array containing scalar multipliers of the vector X.
|
|
C NA is the length of the array AA.
|
|
C X,Y The matrix operations are applied to X and the result is Y.
|
|
C A,B,C are arrays which contain the tridiagonal matrix.
|
|
C M is the order of the matrix.
|
|
C D,W,U are working arrays.
|
|
C IS determines whether or not a change in sign is made.
|
|
C
|
|
C***SEE ALSO BLKTRI
|
|
C***ROUTINES CALLED (NONE)
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 801001 DATE WRITTEN
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900402 Added TYPE section. (WRB)
|
|
C***END PROLOGUE PRODP
|
|
C
|
|
DIMENSION A(*) ,B(*) ,C(*) ,X(*) ,
|
|
1 Y(*) ,D(*) ,U(*) ,BD(*) ,
|
|
2 BM1(*) ,BM2(*) ,AA(*) ,W(*)
|
|
C***FIRST EXECUTABLE STATEMENT PRODP
|
|
DO 101 J=1,M
|
|
Y(J) = X(J)
|
|
W(J) = Y(J)
|
|
101 CONTINUE
|
|
MM = M-1
|
|
MM2 = M-2
|
|
ID = ND
|
|
IBR = 0
|
|
M1 = NM1
|
|
M2 = NM2
|
|
IA = NA
|
|
102 IF (IA) 105,105,103
|
|
103 RT = AA(IA)
|
|
IF (ND .EQ. 0) RT = -RT
|
|
IA = IA-1
|
|
DO 104 J=1,M
|
|
Y(J) = RT*W(J)
|
|
104 CONTINUE
|
|
105 IF (ID) 128,128,106
|
|
106 RT = BD(ID)
|
|
ID = ID-1
|
|
IF (ID .EQ. 0) IBR = 1
|
|
C
|
|
C BEGIN SOLUTION TO SYSTEM
|
|
C
|
|
BH = B(M)-RT
|
|
YM = Y(M)
|
|
DEN = B(1)-RT
|
|
D(1) = C(1)/DEN
|
|
U(1) = A(1)/DEN
|
|
W(1) = Y(1)/DEN
|
|
V = C(M)
|
|
IF (MM2-2) 109,107,107
|
|
107 DO 108 J=2,MM2
|
|
DEN = B(J)-RT-A(J)*D(J-1)
|
|
D(J) = C(J)/DEN
|
|
U(J) = -A(J)*U(J-1)/DEN
|
|
W(J) = (Y(J)-A(J)*W(J-1))/DEN
|
|
BH = BH-V*U(J-1)
|
|
YM = YM-V*W(J-1)
|
|
V = -V*D(J-1)
|
|
108 CONTINUE
|
|
109 DEN = B(M-1)-RT-A(M-1)*D(M-2)
|
|
D(M-1) = (C(M-1)-A(M-1)*U(M-2))/DEN
|
|
W(M-1) = (Y(M-1)-A(M-1)*W(M-2))/DEN
|
|
AM = A(M)-V*D(M-2)
|
|
BH = BH-V*U(M-2)
|
|
YM = YM-V*W(M-2)
|
|
DEN = BH-AM*D(M-1)
|
|
IF (DEN) 110,111,110
|
|
110 W(M) = (YM-AM*W(M-1))/DEN
|
|
GO TO 112
|
|
111 W(M) = 1.
|
|
112 W(M-1) = W(M-1)-D(M-1)*W(M)
|
|
DO 113 J=2,MM
|
|
K = M-J
|
|
W(K) = W(K)-D(K)*W(K+1)-U(K)*W(M)
|
|
113 CONTINUE
|
|
IF (NA) 116,116,102
|
|
114 DO 115 J=1,M
|
|
Y(J) = W(J)
|
|
115 CONTINUE
|
|
IBR = 1
|
|
GO TO 102
|
|
116 IF (M1) 117,117,118
|
|
117 IF (M2) 114,114,123
|
|
118 IF (M2) 120,120,119
|
|
119 IF (ABS(BM1(M1))-ABS(BM2(M2))) 123,123,120
|
|
120 IF (IBR) 121,121,122
|
|
121 IF (ABS(BM1(M1)-BD(ID))-ABS(BM1(M1)-RT)) 114,122,122
|
|
122 RT = RT-BM1(M1)
|
|
M1 = M1-1
|
|
GO TO 126
|
|
123 IF (IBR) 124,124,125
|
|
124 IF (ABS(BM2(M2)-BD(ID))-ABS(BM2(M2)-RT)) 114,125,125
|
|
125 RT = RT-BM2(M2)
|
|
M2 = M2-1
|
|
126 DO 127 J=1,M
|
|
Y(J) = Y(J)+RT*W(J)
|
|
127 CONTINUE
|
|
GO TO 102
|
|
128 RETURN
|
|
END
|