OpenLibm/slatec/prodp.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

119 lines
3.2 KiB
Fortran

*DECK PRODP
SUBROUTINE PRODP (ND, BD, NM1, BM1, NM2, BM2, NA, AA, X, Y, M, A,
+ B, C, D, U, W)
C***BEGIN PROLOGUE PRODP
C***SUBSIDIARY
C***PURPOSE Subsidiary to BLKTRI
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (PRODP-S, PROCP-C)
C***AUTHOR (UNKNOWN)
C***DESCRIPTION
C
C PRODP applies a sequence of matrix operations to the vector X and
C stores the result in Y (periodic boundary conditions).
C
C BD,BM1,BM2 are arrays containing roots of certain B polynomials.
C ND,NM1,NM2 are the lengths of the arrays BD,BM1,BM2 respectively.
C AA Array containing scalar multipliers of the vector X.
C NA is the length of the array AA.
C X,Y The matrix operations are applied to X and the result is Y.
C A,B,C are arrays which contain the tridiagonal matrix.
C M is the order of the matrix.
C D,W,U are working arrays.
C IS determines whether or not a change in sign is made.
C
C***SEE ALSO BLKTRI
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 801001 DATE WRITTEN
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900402 Added TYPE section. (WRB)
C***END PROLOGUE PRODP
C
DIMENSION A(*) ,B(*) ,C(*) ,X(*) ,
1 Y(*) ,D(*) ,U(*) ,BD(*) ,
2 BM1(*) ,BM2(*) ,AA(*) ,W(*)
C***FIRST EXECUTABLE STATEMENT PRODP
DO 101 J=1,M
Y(J) = X(J)
W(J) = Y(J)
101 CONTINUE
MM = M-1
MM2 = M-2
ID = ND
IBR = 0
M1 = NM1
M2 = NM2
IA = NA
102 IF (IA) 105,105,103
103 RT = AA(IA)
IF (ND .EQ. 0) RT = -RT
IA = IA-1
DO 104 J=1,M
Y(J) = RT*W(J)
104 CONTINUE
105 IF (ID) 128,128,106
106 RT = BD(ID)
ID = ID-1
IF (ID .EQ. 0) IBR = 1
C
C BEGIN SOLUTION TO SYSTEM
C
BH = B(M)-RT
YM = Y(M)
DEN = B(1)-RT
D(1) = C(1)/DEN
U(1) = A(1)/DEN
W(1) = Y(1)/DEN
V = C(M)
IF (MM2-2) 109,107,107
107 DO 108 J=2,MM2
DEN = B(J)-RT-A(J)*D(J-1)
D(J) = C(J)/DEN
U(J) = -A(J)*U(J-1)/DEN
W(J) = (Y(J)-A(J)*W(J-1))/DEN
BH = BH-V*U(J-1)
YM = YM-V*W(J-1)
V = -V*D(J-1)
108 CONTINUE
109 DEN = B(M-1)-RT-A(M-1)*D(M-2)
D(M-1) = (C(M-1)-A(M-1)*U(M-2))/DEN
W(M-1) = (Y(M-1)-A(M-1)*W(M-2))/DEN
AM = A(M)-V*D(M-2)
BH = BH-V*U(M-2)
YM = YM-V*W(M-2)
DEN = BH-AM*D(M-1)
IF (DEN) 110,111,110
110 W(M) = (YM-AM*W(M-1))/DEN
GO TO 112
111 W(M) = 1.
112 W(M-1) = W(M-1)-D(M-1)*W(M)
DO 113 J=2,MM
K = M-J
W(K) = W(K)-D(K)*W(K+1)-U(K)*W(M)
113 CONTINUE
IF (NA) 116,116,102
114 DO 115 J=1,M
Y(J) = W(J)
115 CONTINUE
IBR = 1
GO TO 102
116 IF (M1) 117,117,118
117 IF (M2) 114,114,123
118 IF (M2) 120,120,119
119 IF (ABS(BM1(M1))-ABS(BM2(M2))) 123,123,120
120 IF (IBR) 121,121,122
121 IF (ABS(BM1(M1)-BD(ID))-ABS(BM1(M1)-RT)) 114,122,122
122 RT = RT-BM1(M1)
M1 = M1-1
GO TO 126
123 IF (IBR) 124,124,125
124 IF (ABS(BM2(M2)-BD(ID))-ABS(BM2(M2)-RT)) 114,125,125
125 RT = RT-BM2(M2)
M2 = M2-1
126 DO 127 J=1,M
Y(J) = Y(J)+RT*W(J)
127 CONTINUE
GO TO 102
128 RETURN
END