OpenLibm/slatec/qagse.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

459 lines
17 KiB
Fortran

*DECK QAGSE
SUBROUTINE QAGSE (F, A, B, EPSABS, EPSREL, LIMIT, RESULT, ABSERR,
+ NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
C***BEGIN PROLOGUE QAGSE
C***PURPOSE The routine calculates an approximation result to a given
C definite integral I = Integral of F over (A,B),
C hopefully satisfying following claim for accuracy
C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
C***LIBRARY SLATEC (QUADPACK)
C***CATEGORY H2A1A1
C***TYPE SINGLE PRECISION (QAGSE-S, DQAGSE-D)
C***KEYWORDS AUTOMATIC INTEGRATOR, END POINT SINGULARITIES,
C EXTRAPOLATION, GENERAL-PURPOSE, GLOBALLY ADAPTIVE,
C QUADPACK, QUADRATURE
C***AUTHOR Piessens, Robert
C Applied Mathematics and Programming Division
C K. U. Leuven
C de Doncker, Elise
C Applied Mathematics and Programming Division
C K. U. Leuven
C***DESCRIPTION
C
C Computation of a definite integral
C Standard fortran subroutine
C Real version
C
C PARAMETERS
C ON ENTRY
C F - Real
C Function subprogram defining the integrand
C function F(X). The actual name for F needs to be
C declared E X T E R N A L in the driver program.
C
C A - Real
C Lower limit of integration
C
C B - Real
C Upper limit of integration
C
C EPSABS - Real
C Absolute accuracy requested
C EPSREL - Real
C Relative accuracy requested
C If EPSABS.LE.0
C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
C the routine will end with IER = 6.
C
C LIMIT - Integer
C Gives an upper bound on the number of subintervals
C in the partition of (A,B)
C
C ON RETURN
C RESULT - Real
C Approximation to the integral
C
C ABSERR - Real
C Estimate of the modulus of the absolute error,
C which should equal or exceed ABS(I-RESULT)
C
C NEVAL - Integer
C Number of integrand evaluations
C
C IER - Integer
C IER = 0 Normal and reliable termination of the
C routine. It is assumed that the requested
C accuracy has been achieved.
C IER.GT.0 Abnormal termination of the routine
C the estimates for integral and error are
C less reliable. It is assumed that the
C requested accuracy has not been achieved.
C ERROR MESSAGES
C = 1 Maximum number of subdivisions allowed
C has been achieved. One can allow more sub-
C divisions by increasing the value of LIMIT
C (and taking the according dimension
C adjustments into account). However, if
C this yields no improvement it is advised
C to analyze the integrand in order to
C determine the integration difficulties. If
C the position of a local difficulty can be
C determined (e.g. singularity,
C discontinuity within the interval) one
C will probably gain from splitting up the
C interval at this point and calling the
C integrator on the subranges. If possible,
C an appropriate special-purpose integrator
C should be used, which is designed for
C handling the type of difficulty involved.
C = 2 The occurrence of roundoff error is detec-
C ted, which prevents the requested
C tolerance from being achieved.
C The error may be under-estimated.
C = 3 Extremely bad integrand behaviour
C occurs at some points of the integration
C interval.
C = 4 The algorithm does not converge.
C Roundoff error is detected in the
C extrapolation table.
C It is presumed that the requested
C tolerance cannot be achieved, and that the
C returned result is the best which can be
C obtained.
C = 5 The integral is probably divergent, or
C slowly convergent. It must be noted that
C divergence can occur with any other value
C of IER.
C = 6 The input is invalid, because
C EPSABS.LE.0 and
C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28).
C RESULT, ABSERR, NEVAL, LAST, RLIST(1),
C IORD(1) and ELIST(1) are set to zero.
C ALIST(1) and BLIST(1) are set to A and B
C respectively.
C
C ALIST - Real
C Vector of dimension at least LIMIT, the first
C LAST elements of which are the left end points
C of the subintervals in the partition of the
C given integration range (A,B)
C
C BLIST - Real
C Vector of dimension at least LIMIT, the first
C LAST elements of which are the right end points
C of the subintervals in the partition of the given
C integration range (A,B)
C
C RLIST - Real
C Vector of dimension at least LIMIT, the first
C LAST elements of which are the integral
C approximations on the subintervals
C
C ELIST - Real
C Vector of dimension at least LIMIT, the first
C LAST elements of which are the moduli of the
C absolute error estimates on the subintervals
C
C IORD - Integer
C Vector of dimension at least LIMIT, the first K
C elements of which are pointers to the
C error estimates over the subintervals,
C such that ELIST(IORD(1)), ..., ELIST(IORD(K))
C form a decreasing sequence, with K = LAST
C If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
C otherwise
C
C LAST - Integer
C Number of subintervals actually produced in the
C subdivision process
C
C***REFERENCES (NONE)
C***ROUTINES CALLED QELG, QK21, QPSRT, R1MACH
C***REVISION HISTORY (YYMMDD)
C 800101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C***END PROLOGUE QAGSE
C
REAL A,ABSEPS,ABSERR,ALIST,AREA,AREA1,AREA12,AREA2,A1,
1 A2,B,BLIST,B1,B2,CORREC,DEFABS,DEFAB1,DEFAB2,R1MACH,
2 DRES,ELIST,EPMACH,EPSABS,EPSREL,ERLARG,ERLAST,ERRBND,
3 ERRMAX,ERROR1,ERROR2,ERRO12,ERRSUM,ERTEST,F,OFLOW,RESABS,
4 RESEPS,RESULT,RES3LA,RLIST,RLIST2,SMALL,UFLOW
INTEGER ID,IER,IERRO,IORD,IROFF1,IROFF2,IROFF3,JUPBND,K,KSGN,
1 KTMIN,LAST,LIMIT,MAXERR,NEVAL,NRES,NRMAX,NUMRL2
LOGICAL EXTRAP,NOEXT
C
DIMENSION ALIST(*),BLIST(*),ELIST(*),IORD(*),
1 RES3LA(3),RLIST(*),RLIST2(52)
C
EXTERNAL F
C
C THE DIMENSION OF RLIST2 IS DETERMINED BY THE VALUE OF
C LIMEXP IN SUBROUTINE QELG (RLIST2 SHOULD BE OF DIMENSION
C (LIMEXP+2) AT LEAST).
C
C LIST OF MAJOR VARIABLES
C -----------------------
C
C ALIST - LIST OF LEFT END POINTS OF ALL SUBINTERVALS
C CONSIDERED UP TO NOW
C BLIST - LIST OF RIGHT END POINTS OF ALL SUBINTERVALS
C CONSIDERED UP TO NOW
C RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
C (ALIST(I),BLIST(I))
C RLIST2 - ARRAY OF DIMENSION AT LEAST LIMEXP+2
C CONTAINING THE PART OF THE EPSILON TABLE
C WHICH IS STILL NEEDED FOR FURTHER COMPUTATIONS
C ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
C MAXERR - POINTER TO THE INTERVAL WITH LARGEST ERROR
C ESTIMATE
C ERRMAX - ELIST(MAXERR)
C ERLAST - ERROR ON THE INTERVAL CURRENTLY SUBDIVIDED
C (BEFORE THAT SUBDIVISION HAS TAKEN PLACE)
C AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
C ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
C ERRBND - REQUESTED ACCURACY MAX(EPSABS,EPSREL*
C ABS(RESULT))
C *****1 - VARIABLE FOR THE LEFT INTERVAL
C *****2 - VARIABLE FOR THE RIGHT INTERVAL
C LAST - INDEX FOR SUBDIVISION
C NRES - NUMBER OF CALLS TO THE EXTRAPOLATION ROUTINE
C NUMRL2 - NUMBER OF ELEMENTS CURRENTLY IN RLIST2. IF AN
C APPROPRIATE APPROXIMATION TO THE COMPOUNDED
C INTEGRAL HAS BEEN OBTAINED IT IS PUT IN
C RLIST2(NUMRL2) AFTER NUMRL2 HAS BEEN INCREASED
C BY ONE.
C SMALL - LENGTH OF THE SMALLEST INTERVAL CONSIDERED
C UP TO NOW, MULTIPLIED BY 1.5
C ERLARG - SUM OF THE ERRORS OVER THE INTERVALS LARGER
C THAN THE SMALLEST INTERVAL CONSIDERED UP TO NOW
C EXTRAP - LOGICAL VARIABLE DENOTING THAT THE ROUTINE
C IS ATTEMPTING TO PERFORM EXTRAPOLATION
C I.E. BEFORE SUBDIVIDING THE SMALLEST INTERVAL
C WE TRY TO DECREASE THE VALUE OF ERLARG.
C NOEXT - LOGICAL VARIABLE DENOTING THAT EXTRAPOLATION
C IS NO LONGER ALLOWED (TRUE VALUE)
C
C MACHINE DEPENDENT CONSTANTS
C ---------------------------
C
C EPMACH IS THE LARGEST RELATIVE SPACING.
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
C OFLOW IS THE LARGEST POSITIVE MAGNITUDE.
C
C***FIRST EXECUTABLE STATEMENT QAGSE
EPMACH = R1MACH(4)
C
C TEST ON VALIDITY OF PARAMETERS
C ------------------------------
IER = 0
NEVAL = 0
LAST = 0
RESULT = 0.0E+00
ABSERR = 0.0E+00
ALIST(1) = A
BLIST(1) = B
RLIST(1) = 0.0E+00
ELIST(1) = 0.0E+00
IF(EPSABS.LE.0.0E+00.AND.EPSREL.LT.MAX(0.5E+02*EPMACH,0.5E-14))
1 IER = 6
IF(IER.EQ.6) GO TO 999
C
C FIRST APPROXIMATION TO THE INTEGRAL
C -----------------------------------
C
UFLOW = R1MACH(1)
OFLOW = R1MACH(2)
IERRO = 0
CALL QK21(F,A,B,RESULT,ABSERR,DEFABS,RESABS)
C
C TEST ON ACCURACY.
C
DRES = ABS(RESULT)
ERRBND = MAX(EPSABS,EPSREL*DRES)
LAST = 1
RLIST(1) = RESULT
ELIST(1) = ABSERR
IORD(1) = 1
IF(ABSERR.LE.1.0E+02*EPMACH*DEFABS.AND.ABSERR.GT.
1 ERRBND) IER = 2
IF(LIMIT.EQ.1) IER = 1
IF(IER.NE.0.OR.(ABSERR.LE.ERRBND.AND.ABSERR.NE.RESABS).OR.
1 ABSERR.EQ.0.0E+00) GO TO 140
C
C INITIALIZATION
C --------------
C
RLIST2(1) = RESULT
ERRMAX = ABSERR
MAXERR = 1
AREA = RESULT
ERRSUM = ABSERR
ABSERR = OFLOW
NRMAX = 1
NRES = 0
NUMRL2 = 2
KTMIN = 0
EXTRAP = .FALSE.
NOEXT = .FALSE.
IROFF1 = 0
IROFF2 = 0
IROFF3 = 0
KSGN = -1
IF(DRES.GE.(0.1E+01-0.5E+02*EPMACH)*DEFABS) KSGN = 1
C
C MAIN DO-LOOP
C ------------
C
DO 90 LAST = 2,LIMIT
C
C BISECT THE SUBINTERVAL WITH THE NRMAX-TH LARGEST
C ERROR ESTIMATE.
C
A1 = ALIST(MAXERR)
B1 = 0.5E+00*(ALIST(MAXERR)+BLIST(MAXERR))
A2 = B1
B2 = BLIST(MAXERR)
ERLAST = ERRMAX
CALL QK21(F,A1,B1,AREA1,ERROR1,RESABS,DEFAB1)
CALL QK21(F,A2,B2,AREA2,ERROR2,RESABS,DEFAB2)
C
C IMPROVE PREVIOUS APPROXIMATIONS TO INTEGRAL
C AND ERROR AND TEST FOR ACCURACY.
C
AREA12 = AREA1+AREA2
ERRO12 = ERROR1+ERROR2
ERRSUM = ERRSUM+ERRO12-ERRMAX
AREA = AREA+AREA12-RLIST(MAXERR)
IF(DEFAB1.EQ.ERROR1.OR.DEFAB2.EQ.ERROR2) GO TO 15
IF(ABS(RLIST(MAXERR)-AREA12).GT.0.1E-04*ABS(AREA12)
1 .OR.ERRO12.LT.0.99E+00*ERRMAX) GO TO 10
IF(EXTRAP) IROFF2 = IROFF2+1
IF(.NOT.EXTRAP) IROFF1 = IROFF1+1
10 IF(LAST.GT.10.AND.ERRO12.GT.ERRMAX) IROFF3 = IROFF3+1
15 RLIST(MAXERR) = AREA1
RLIST(LAST) = AREA2
ERRBND = MAX(EPSABS,EPSREL*ABS(AREA))
C
C TEST FOR ROUNDOFF ERROR AND EVENTUALLY
C SET ERROR FLAG.
C
IF(IROFF1+IROFF2.GE.10.OR.IROFF3.GE.20) IER = 2
IF(IROFF2.GE.5) IERRO = 3
C
C SET ERROR FLAG IN THE CASE THAT THE NUMBER OF
C SUBINTERVALS EQUALS LIMIT.
C
IF(LAST.EQ.LIMIT) IER = 1
C
C SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
C AT A POINT OF THE INTEGRATION RANGE.
C
IF(MAX(ABS(A1),ABS(B2)).LE.(0.1E+01+0.1E+03*EPMACH)*
1 (ABS(A2)+0.1E+04*UFLOW)) IER = 4
C
C APPEND THE NEWLY-CREATED INTERVALS TO THE LIST.
C
IF(ERROR2.GT.ERROR1) GO TO 20
ALIST(LAST) = A2
BLIST(MAXERR) = B1
BLIST(LAST) = B2
ELIST(MAXERR) = ERROR1
ELIST(LAST) = ERROR2
GO TO 30
20 ALIST(MAXERR) = A2
ALIST(LAST) = A1
BLIST(LAST) = B1
RLIST(MAXERR) = AREA2
RLIST(LAST) = AREA1
ELIST(MAXERR) = ERROR2
ELIST(LAST) = ERROR1
C
C CALL SUBROUTINE QPSRT TO MAINTAIN THE DESCENDING ORDERING
C IN THE LIST OF ERROR ESTIMATES AND SELECT THE
C SUBINTERVAL WITH NRMAX-TH LARGEST ERROR ESTIMATE (TO BE
C BISECTED NEXT).
C
30 CALL QPSRT(LIMIT,LAST,MAXERR,ERRMAX,ELIST,IORD,NRMAX)
C ***JUMP OUT OF DO-LOOP
IF(ERRSUM.LE.ERRBND) GO TO 115
C ***JUMP OUT OF DO-LOOP
IF(IER.NE.0) GO TO 100
IF(LAST.EQ.2) GO TO 80
IF(NOEXT) GO TO 90
ERLARG = ERLARG-ERLAST
IF(ABS(B1-A1).GT.SMALL) ERLARG = ERLARG+ERRO12
IF(EXTRAP) GO TO 40
C
C TEST WHETHER THE INTERVAL TO BE BISECTED NEXT IS THE
C SMALLEST INTERVAL.
C
IF(ABS(BLIST(MAXERR)-ALIST(MAXERR)).GT.SMALL) GO TO 90
EXTRAP = .TRUE.
NRMAX = 2
40 IF(IERRO.EQ.3.OR.ERLARG.LE.ERTEST) GO TO 60
C
C THE SMALLEST INTERVAL HAS THE LARGEST ERROR.
C BEFORE BISECTING DECREASE THE SUM OF THE ERRORS
C OVER THE LARGER INTERVALS (ERLARG) AND PERFORM
C EXTRAPOLATION.
C
ID = NRMAX
JUPBND = LAST
IF(LAST.GT.(2+LIMIT/2)) JUPBND = LIMIT+3-LAST
DO 50 K = ID,JUPBND
MAXERR = IORD(NRMAX)
ERRMAX = ELIST(MAXERR)
C ***JUMP OUT OF DO-LOOP
IF(ABS(BLIST(MAXERR)-ALIST(MAXERR)).GT.SMALL) GO TO 90
NRMAX = NRMAX+1
50 CONTINUE
C
C PERFORM EXTRAPOLATION.
C
60 NUMRL2 = NUMRL2+1
RLIST2(NUMRL2) = AREA
CALL QELG(NUMRL2,RLIST2,RESEPS,ABSEPS,RES3LA,NRES)
KTMIN = KTMIN+1
IF(KTMIN.GT.5.AND.ABSERR.LT.0.1E-02*ERRSUM) IER = 5
IF(ABSEPS.GE.ABSERR) GO TO 70
KTMIN = 0
ABSERR = ABSEPS
RESULT = RESEPS
CORREC = ERLARG
ERTEST = MAX(EPSABS,EPSREL*ABS(RESEPS))
C ***JUMP OUT OF DO-LOOP
IF(ABSERR.LE.ERTEST) GO TO 100
C
C PREPARE BISECTION OF THE SMALLEST INTERVAL.
C
70 IF(NUMRL2.EQ.1) NOEXT = .TRUE.
IF(IER.EQ.5) GO TO 100
MAXERR = IORD(1)
ERRMAX = ELIST(MAXERR)
NRMAX = 1
EXTRAP = .FALSE.
SMALL = SMALL*0.5E+00
ERLARG = ERRSUM
GO TO 90
80 SMALL = ABS(B-A)*0.375E+00
ERLARG = ERRSUM
ERTEST = ERRBND
RLIST2(2) = AREA
90 CONTINUE
C
C SET FINAL RESULT AND ERROR ESTIMATE.
C ------------------------------------
C
100 IF(ABSERR.EQ.OFLOW) GO TO 115
IF(IER+IERRO.EQ.0) GO TO 110
IF(IERRO.EQ.3) ABSERR = ABSERR+CORREC
IF(IER.EQ.0) IER = 3
IF(RESULT.NE.0.0E+00.AND.AREA.NE.0.0E+00) GO TO 105
IF(ABSERR.GT.ERRSUM) GO TO 115
IF(AREA.EQ.0.0E+00) GO TO 130
GO TO 110
105 IF(ABSERR/ABS(RESULT).GT.ERRSUM/ABS(AREA)) GO TO 115
C
C TEST ON DIVERGENCE.
C
110 IF(KSGN.EQ.(-1).AND.MAX(ABS(RESULT),ABS(AREA)).LE.
1 DEFABS*0.1E-01) GO TO 130
IF(0.1E-01.GT.(RESULT/AREA).OR.(RESULT/AREA).GT.0.1E+03
1 .OR.ERRSUM.GT.ABS(AREA)) IER = 6
GO TO 130
C
C COMPUTE GLOBAL INTEGRAL SUM.
C
115 RESULT = 0.0E+00
DO 120 K = 1,LAST
RESULT = RESULT+RLIST(K)
120 CONTINUE
ABSERR = ERRSUM
130 IF(IER.GT.2) IER = IER-1
140 NEVAL = 42*LAST-21
999 RETURN
END