mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
340 lines
12 KiB
Fortran
340 lines
12 KiB
Fortran
*DECK QAWCE
|
|
SUBROUTINE QAWCE (F, A, B, C, EPSABS, EPSREL, LIMIT, RESULT,
|
|
+ ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
|
|
C***BEGIN PROLOGUE QAWCE
|
|
C***PURPOSE The routine calculates an approximation result to a
|
|
C CAUCHY PRINCIPAL VALUE I = Integral of F*W over (A,B)
|
|
C (W(X) = 1/(X-C), (C.NE.A, C.NE.B), hopefully satisfying
|
|
C following claim for accuracy
|
|
C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
|
|
C***LIBRARY SLATEC (QUADPACK)
|
|
C***CATEGORY H2A2A1, J4
|
|
C***TYPE SINGLE PRECISION (QAWCE-S, DQAWCE-D)
|
|
C***KEYWORDS AUTOMATIC INTEGRATOR, CAUCHY PRINCIPAL VALUE,
|
|
C CLENSHAW-CURTIS METHOD, QUADPACK, QUADRATURE,
|
|
C SPECIAL-PURPOSE
|
|
C***AUTHOR Piessens, Robert
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C de Doncker, Elise
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C***DESCRIPTION
|
|
C
|
|
C Computation of a CAUCHY PRINCIPAL VALUE
|
|
C Standard fortran subroutine
|
|
C Real version
|
|
C
|
|
C PARAMETERS
|
|
C ON ENTRY
|
|
C F - Real
|
|
C Function subprogram defining the integrand
|
|
C function F(X). The actual name for F needs to be
|
|
C declared E X T E R N A L in the driver program.
|
|
C
|
|
C A - Real
|
|
C Lower limit of integration
|
|
C
|
|
C B - Real
|
|
C Upper limit of integration
|
|
C
|
|
C C - Real
|
|
C Parameter in the WEIGHT function, C.NE.A, C.NE.B
|
|
C If C = A OR C = B, the routine will end with
|
|
C IER = 6.
|
|
C
|
|
C EPSABS - Real
|
|
C Absolute accuracy requested
|
|
C EPSREL - Real
|
|
C Relative accuracy requested
|
|
C If EPSABS.LE.0
|
|
C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
|
|
C the routine will end with IER = 6.
|
|
C
|
|
C LIMIT - Integer
|
|
C Gives an upper bound on the number of subintervals
|
|
C in the partition of (A,B), LIMIT.GE.1
|
|
C
|
|
C ON RETURN
|
|
C RESULT - Real
|
|
C Approximation to the integral
|
|
C
|
|
C ABSERR - Real
|
|
C Estimate of the modulus of the absolute error,
|
|
C which should equal or exceed ABS(I-RESULT)
|
|
C
|
|
C NEVAL - Integer
|
|
C Number of integrand evaluations
|
|
C
|
|
C IER - Integer
|
|
C IER = 0 Normal and reliable termination of the
|
|
C routine. It is assumed that the requested
|
|
C accuracy has been achieved.
|
|
C IER.GT.0 Abnormal termination of the routine
|
|
C the estimates for integral and error are
|
|
C less reliable. It is assumed that the
|
|
C requested accuracy has not been achieved.
|
|
C ERROR MESSAGES
|
|
C IER = 1 Maximum number of subdivisions allowed
|
|
C has been achieved. One can allow more sub-
|
|
C divisions by increasing the value of
|
|
C LIMIT. However, if this yields no
|
|
C improvement it is advised to analyze the
|
|
C the integrand, in order to determine the
|
|
C the integration difficulties. If the
|
|
C position of a local difficulty can be
|
|
C determined (e.g. SINGULARITY,
|
|
C DISCONTINUITY within the interval) one
|
|
C will probably gain from splitting up the
|
|
C interval at this point and calling
|
|
C appropriate integrators on the subranges.
|
|
C = 2 The occurrence of roundoff error is detec-
|
|
C ted, which prevents the requested
|
|
C tolerance from being achieved.
|
|
C = 3 Extremely bad integrand behaviour
|
|
C occurs at some interior points of
|
|
C the integration interval.
|
|
C = 6 The input is invalid, because
|
|
C C = A or C = B or
|
|
C (EPSABS.LE.0 and
|
|
C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
|
|
C or LIMIT.LT.1.
|
|
C RESULT, ABSERR, NEVAL, RLIST(1), ELIST(1),
|
|
C IORD(1) and LAST are set to zero. ALIST(1)
|
|
C and BLIST(1) are set to A and B
|
|
C respectively.
|
|
C
|
|
C ALIST - Real
|
|
C Vector of dimension at least LIMIT, the first
|
|
C LAST elements of which are the left
|
|
C end points of the subintervals in the partition
|
|
C of the given integration range (A,B)
|
|
C
|
|
C BLIST - Real
|
|
C Vector of dimension at least LIMIT, the first
|
|
C LAST elements of which are the right
|
|
C end points of the subintervals in the partition
|
|
C of the given integration range (A,B)
|
|
C
|
|
C RLIST - Real
|
|
C Vector of dimension at least LIMIT, the first
|
|
C LAST elements of which are the integral
|
|
C approximations on the subintervals
|
|
C
|
|
C ELIST - Real
|
|
C Vector of dimension LIMIT, the first LAST
|
|
C elements of which are the moduli of the absolute
|
|
C error estimates on the subintervals
|
|
C
|
|
C IORD - Integer
|
|
C Vector of dimension at least LIMIT, the first K
|
|
C elements of which are pointers to the error
|
|
C estimates over the subintervals, so that
|
|
C ELIST(IORD(1)), ..., ELIST(IORD(K)) with K = LAST
|
|
C If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
|
|
C otherwise, form a decreasing sequence
|
|
C
|
|
C LAST - Integer
|
|
C Number of subintervals actually produced in
|
|
C the subdivision process
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED QC25C, QPSRT, R1MACH
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 800101 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C***END PROLOGUE QAWCE
|
|
C
|
|
REAL A,AA,ABSERR,ALIST,AREA,AREA1,AREA12,AREA2,A1,A2,B,BB,BLIST,
|
|
1 B1,B2,C,R1MACH,ELIST,EPMACH,EPSABS,EPSREL,ERRBND,ERRMAX,ERROR1,
|
|
2 ERROR2,ERRSUM,F,RESULT,RLIST,UFLOW
|
|
INTEGER IER,IORD,IROFF1,IROFF2,K,KRULE,LAST,LIMIT,MAXERR,NEV,
|
|
1 NEVAL,NRMAX
|
|
C
|
|
DIMENSION ALIST(*),BLIST(*),RLIST(*),ELIST(*),
|
|
1 IORD(*)
|
|
C
|
|
EXTERNAL F
|
|
C
|
|
C LIST OF MAJOR VARIABLES
|
|
C -----------------------
|
|
C
|
|
C ALIST - LIST OF LEFT END POINTS OF ALL SUBINTERVALS
|
|
C CONSIDERED UP TO NOW
|
|
C BLIST - LIST OF RIGHT END POINTS OF ALL SUBINTERVALS
|
|
C CONSIDERED UP TO NOW
|
|
C RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
|
|
C (ALIST(I),BLIST(I))
|
|
C ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
|
|
C MAXERR - POINTER TO THE INTERVAL WITH LARGEST
|
|
C ERROR ESTIMATE
|
|
C ERRMAX - ELIST(MAXERR)
|
|
C AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
|
|
C ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
|
|
C ERRBND - REQUESTED ACCURACY MAX(EPSABS,EPSREL*
|
|
C ABS(RESULT))
|
|
C *****1 - VARIABLE FOR THE LEFT SUBINTERVAL
|
|
C *****2 - VARIABLE FOR THE RIGHT SUBINTERVAL
|
|
C LAST - INDEX FOR SUBDIVISION
|
|
C
|
|
C
|
|
C MACHINE DEPENDENT CONSTANTS
|
|
C ---------------------------
|
|
C
|
|
C EPMACH IS THE LARGEST RELATIVE SPACING.
|
|
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT QAWCE
|
|
EPMACH = R1MACH(4)
|
|
UFLOW = R1MACH(1)
|
|
C
|
|
C
|
|
C TEST ON VALIDITY OF PARAMETERS
|
|
C ------------------------------
|
|
C
|
|
IER = 6
|
|
NEVAL = 0
|
|
LAST = 0
|
|
ALIST(1) = A
|
|
BLIST(1) = B
|
|
RLIST(1) = 0.0E+00
|
|
ELIST(1) = 0.0E+00
|
|
IORD(1) = 0
|
|
RESULT = 0.0E+00
|
|
ABSERR = 0.0E+00
|
|
IF (C.EQ.A.OR.C.EQ.B.OR.(EPSABS.LE.0.0E+00.AND.
|
|
1 EPSREL.LT.MAX(0.5E+02*EPMACH,0.5E-14))) GO TO 999
|
|
C
|
|
C FIRST APPROXIMATION TO THE INTEGRAL
|
|
C -----------------------------------
|
|
C
|
|
AA=A
|
|
BB=B
|
|
IF (A.LE.B) GO TO 10
|
|
AA=B
|
|
BB=A
|
|
10 IER=0
|
|
KRULE = 1
|
|
CALL QC25C(F,AA,BB,C,RESULT,ABSERR,KRULE,NEVAL)
|
|
LAST = 1
|
|
RLIST(1) = RESULT
|
|
ELIST(1) = ABSERR
|
|
IORD(1) = 1
|
|
ALIST(1) = A
|
|
BLIST(1) = B
|
|
C
|
|
C TEST ON ACCURACY
|
|
C
|
|
ERRBND = MAX(EPSABS,EPSREL*ABS(RESULT))
|
|
IF(LIMIT.EQ.1) IER = 1
|
|
IF(ABSERR.LT.MIN(0.1E-01*ABS(RESULT),ERRBND)
|
|
1 .OR.IER.EQ.1) GO TO 70
|
|
C
|
|
C INITIALIZATION
|
|
C --------------
|
|
C
|
|
ALIST(1) = AA
|
|
BLIST(1) = BB
|
|
RLIST(1) = RESULT
|
|
ERRMAX = ABSERR
|
|
MAXERR = 1
|
|
AREA = RESULT
|
|
ERRSUM = ABSERR
|
|
NRMAX = 1
|
|
IROFF1 = 0
|
|
IROFF2 = 0
|
|
C
|
|
C MAIN DO-LOOP
|
|
C ------------
|
|
C
|
|
DO 40 LAST = 2,LIMIT
|
|
C
|
|
C BISECT THE SUBINTERVAL WITH NRMAX-TH LARGEST
|
|
C ERROR ESTIMATE.
|
|
C
|
|
A1 = ALIST(MAXERR)
|
|
B1 = 0.5E+00*(ALIST(MAXERR)+BLIST(MAXERR))
|
|
B2 = BLIST(MAXERR)
|
|
IF(C.LE.B1.AND.C.GT.A1) B1 = 0.5E+00*(C+B2)
|
|
IF(C.GT.B1.AND.C.LT.B2) B1 = 0.5E+00*(A1+C)
|
|
A2 = B1
|
|
KRULE = 2
|
|
CALL QC25C(F,A1,B1,C,AREA1,ERROR1,KRULE,NEV)
|
|
NEVAL = NEVAL+NEV
|
|
CALL QC25C(F,A2,B2,C,AREA2,ERROR2,KRULE,NEV)
|
|
NEVAL = NEVAL+NEV
|
|
C
|
|
C IMPROVE PREVIOUS APPROXIMATIONS TO INTEGRAL
|
|
C AND ERROR AND TEST FOR ACCURACY.
|
|
C
|
|
AREA12 = AREA1+AREA2
|
|
ERRO12 = ERROR1+ERROR2
|
|
ERRSUM = ERRSUM+ERRO12-ERRMAX
|
|
AREA = AREA+AREA12-RLIST(MAXERR)
|
|
IF(ABS(RLIST(MAXERR)-AREA12).LT.0.1E-04*ABS(AREA12)
|
|
1 .AND.ERRO12.GE.0.99E+00*ERRMAX.AND.KRULE.EQ.0)
|
|
2 IROFF1 = IROFF1+1
|
|
IF(LAST.GT.10.AND.ERRO12.GT.ERRMAX.AND.KRULE.EQ.0)
|
|
1 IROFF2 = IROFF2+1
|
|
RLIST(MAXERR) = AREA1
|
|
RLIST(LAST) = AREA2
|
|
ERRBND = MAX(EPSABS,EPSREL*ABS(AREA))
|
|
IF(ERRSUM.LE.ERRBND) GO TO 15
|
|
C
|
|
C TEST FOR ROUNDOFF ERROR AND EVENTUALLY
|
|
C SET ERROR FLAG.
|
|
C
|
|
IF(IROFF1.GE.6.AND.IROFF2.GT.20) IER = 2
|
|
C
|
|
C SET ERROR FLAG IN THE CASE THAT NUMBER OF INTERVAL
|
|
C BISECTIONS EXCEEDS LIMIT.
|
|
C
|
|
IF(LAST.EQ.LIMIT) IER = 1
|
|
C
|
|
C SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
|
|
C AT A POINT OF THE INTEGRATION RANGE.
|
|
C
|
|
IF(MAX(ABS(A1),ABS(B2)).LE.(0.1E+01+0.1E+03*EPMACH)
|
|
1 *(ABS(A2)+0.1E+04*UFLOW)) IER = 3
|
|
C
|
|
C APPEND THE NEWLY-CREATED INTERVALS TO THE LIST.
|
|
C
|
|
15 IF(ERROR2.GT.ERROR1) GO TO 20
|
|
ALIST(LAST) = A2
|
|
BLIST(MAXERR) = B1
|
|
BLIST(LAST) = B2
|
|
ELIST(MAXERR) = ERROR1
|
|
ELIST(LAST) = ERROR2
|
|
GO TO 30
|
|
20 ALIST(MAXERR) = A2
|
|
ALIST(LAST) = A1
|
|
BLIST(LAST) = B1
|
|
RLIST(MAXERR) = AREA2
|
|
RLIST(LAST) = AREA1
|
|
ELIST(MAXERR) = ERROR2
|
|
ELIST(LAST) = ERROR1
|
|
C
|
|
C CALL SUBROUTINE QPSRT TO MAINTAIN THE DESCENDING ORDERING
|
|
C IN THE LIST OF ERROR ESTIMATES AND SELECT THE
|
|
C SUBINTERVAL WITH NRMAX-TH LARGEST ERROR ESTIMATE (TO BE
|
|
C BISECTED NEXT).
|
|
C
|
|
30 CALL QPSRT(LIMIT,LAST,MAXERR,ERRMAX,ELIST,IORD,NRMAX)
|
|
C ***JUMP OUT OF DO-LOOP
|
|
IF(IER.NE.0.OR.ERRSUM.LE.ERRBND) GO TO 50
|
|
40 CONTINUE
|
|
C
|
|
C COMPUTE FINAL RESULT.
|
|
C ---------------------
|
|
C
|
|
50 RESULT = 0.0E+00
|
|
DO 60 K=1,LAST
|
|
RESULT = RESULT+RLIST(K)
|
|
60 CONTINUE
|
|
ABSERR = ERRSUM
|
|
70 IF (AA.EQ.B) RESULT=-RESULT
|
|
999 RETURN
|
|
END
|