mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
384 lines
14 KiB
Fortran
384 lines
14 KiB
Fortran
*DECK QAWSE
|
|
SUBROUTINE QAWSE (F, A, B, ALFA, BETA, INTEGR, EPSABS, EPSREL,
|
|
+ LIMIT, RESULT, ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST,
|
|
+ IORD, LAST)
|
|
C***BEGIN PROLOGUE QAWSE
|
|
C***PURPOSE The routine calculates an approximation result to a given
|
|
C definite integral I = Integral of F*W over (A,B),
|
|
C (where W shows a singular behaviour at the end points,
|
|
C see parameter INTEGR).
|
|
C Hopefully satisfying following claim for accuracy
|
|
C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
|
|
C***LIBRARY SLATEC (QUADPACK)
|
|
C***CATEGORY H2A2A1
|
|
C***TYPE SINGLE PRECISION (QAWSE-S, DQAWSE-D)
|
|
C***KEYWORDS ALGEBRAIC-LOGARITHMIC END POINT SINGULARITIES,
|
|
C AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD, QUADPACK,
|
|
C QUADRATURE, SPECIAL-PURPOSE
|
|
C***AUTHOR Piessens, Robert
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C de Doncker, Elise
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C***DESCRIPTION
|
|
C
|
|
C Integration of functions having algebraico-logarithmic
|
|
C end point singularities
|
|
C Standard fortran subroutine
|
|
C Real version
|
|
C
|
|
C PARAMETERS
|
|
C ON ENTRY
|
|
C F - Real
|
|
C Function subprogram defining the integrand
|
|
C function F(X). The actual name for F needs to be
|
|
C declared E X T E R N A L in the driver program.
|
|
C
|
|
C A - Real
|
|
C Lower limit of integration
|
|
C
|
|
C B - Real
|
|
C Upper limit of integration, B.GT.A
|
|
C If B.LE.A, the routine will end with IER = 6.
|
|
C
|
|
C ALFA - Real
|
|
C Parameter in the WEIGHT function, ALFA.GT.(-1)
|
|
C If ALFA.LE.(-1), the routine will end with
|
|
C IER = 6.
|
|
C
|
|
C BETA - Real
|
|
C Parameter in the WEIGHT function, BETA.GT.(-1)
|
|
C If BETA.LE.(-1), the routine will end with
|
|
C IER = 6.
|
|
C
|
|
C INTEGR - Integer
|
|
C Indicates which WEIGHT function is to be used
|
|
C = 1 (X-A)**ALFA*(B-X)**BETA
|
|
C = 2 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)
|
|
C = 3 (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
|
|
C = 4 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*LOG(B-X)
|
|
C If INTEGR.LT.1 or INTEGR.GT.4, the routine
|
|
C will end with IER = 6.
|
|
C
|
|
C EPSABS - Real
|
|
C Absolute accuracy requested
|
|
C EPSREL - Real
|
|
C Relative accuracy requested
|
|
C If EPSABS.LE.0
|
|
C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
|
|
C the routine will end with IER = 6.
|
|
C
|
|
C LIMIT - Integer
|
|
C Gives an upper bound on the number of subintervals
|
|
C in the partition of (A,B), LIMIT.GE.2
|
|
C If LIMIT.LT.2, the routine will end with IER = 6.
|
|
C
|
|
C ON RETURN
|
|
C RESULT - Real
|
|
C Approximation to the integral
|
|
C
|
|
C ABSERR - Real
|
|
C Estimate of the modulus of the absolute error,
|
|
C which should equal or exceed ABS(I-RESULT)
|
|
C
|
|
C NEVAL - Integer
|
|
C Number of integrand evaluations
|
|
C
|
|
C IER - Integer
|
|
C IER = 0 Normal and reliable termination of the
|
|
C routine. It is assumed that the requested
|
|
C accuracy has been achieved.
|
|
C IER.GT.0 Abnormal termination of the routine
|
|
C the estimates for the integral and error
|
|
C are less reliable. It is assumed that the
|
|
C requested accuracy has not been achieved.
|
|
C ERROR MESSAGES
|
|
C = 1 Maximum number of subdivisions allowed
|
|
C has been achieved. One can allow more
|
|
C subdivisions by increasing the value of
|
|
C LIMIT. However, if this yields no
|
|
C improvement, it is advised to analyze the
|
|
C integrand in order to determine the
|
|
C integration difficulties which prevent the
|
|
C requested tolerance from being achieved.
|
|
C In case of a jump DISCONTINUITY or a local
|
|
C SINGULARITY of algebraico-logarithmic type
|
|
C at one or more interior points of the
|
|
C integration range, one should proceed by
|
|
C splitting up the interval at these
|
|
C points and calling the integrator on the
|
|
C subranges.
|
|
C = 2 The occurrence of roundoff error is
|
|
C detected, which prevents the requested
|
|
C tolerance from being achieved.
|
|
C = 3 Extremely bad integrand behaviour occurs
|
|
C at some points of the integration
|
|
C interval.
|
|
C = 6 The input is invalid, because
|
|
C B.LE.A or ALFA.LE.(-1) or BETA.LE.(-1), or
|
|
C INTEGR.LT.1 or INTEGR.GT.4, or
|
|
C (EPSABS.LE.0 and
|
|
C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
|
|
C or LIMIT.LT.2.
|
|
C RESULT, ABSERR, NEVAL, RLIST(1), ELIST(1),
|
|
C IORD(1) and LAST are set to zero. ALIST(1)
|
|
C and BLIST(1) are set to A and B
|
|
C respectively.
|
|
C
|
|
C ALIST - Real
|
|
C Vector of dimension at least LIMIT, the first
|
|
C LAST elements of which are the left
|
|
C end points of the subintervals in the partition
|
|
C of the given integration range (A,B)
|
|
C
|
|
C BLIST - Real
|
|
C Vector of dimension at least LIMIT, the first
|
|
C LAST elements of which are the right
|
|
C end points of the subintervals in the partition
|
|
C of the given integration range (A,B)
|
|
C
|
|
C RLIST - Real
|
|
C Vector of dimension at least LIMIT, the first
|
|
C LAST elements of which are the integral
|
|
C approximations on the subintervals
|
|
C
|
|
C ELIST - Real
|
|
C Vector of dimension at least LIMIT, the first
|
|
C LAST elements of which are the moduli of the
|
|
C absolute error estimates on the subintervals
|
|
C
|
|
C IORD - Integer
|
|
C Vector of dimension at least LIMIT, the first K
|
|
C of which are pointers to the error
|
|
C estimates over the subintervals, so that
|
|
C ELIST(IORD(1)), ..., ELIST(IORD(K)) with K = LAST
|
|
C If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
|
|
C otherwise form a decreasing sequence
|
|
C
|
|
C LAST - Integer
|
|
C Number of subintervals actually produced in
|
|
C the subdivision process
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED QC25S, QMOMO, QPSRT, R1MACH
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 800101 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C***END PROLOGUE QAWSE
|
|
C
|
|
REAL A,ABSERR,ALFA,ALIST,AREA,AREA1,AREA12,
|
|
1 AREA2,A1,A2,B,BETA,BLIST,B1,B2,CENTRE,
|
|
2 R1MACH,ELIST,EPMACH,EPSABS,EPSREL,ERRBND,ERRMAX,
|
|
3 ERROR1,ERRO12,ERROR2,ERRSUM,F,RESAS1,RESAS2,RESULT,RG,RH,RI,RJ,
|
|
4 RLIST,UFLOW
|
|
INTEGER IER,INTEGR,IORD,IROFF1,IROFF2,K,LAST,
|
|
1 LIMIT,MAXERR,NEV,NEVAL,NRMAX
|
|
C
|
|
EXTERNAL F
|
|
C
|
|
DIMENSION ALIST(*),BLIST(*),RLIST(*),ELIST(*),
|
|
1 IORD(*),RI(25),RJ(25),RH(25),RG(25)
|
|
C
|
|
C LIST OF MAJOR VARIABLES
|
|
C -----------------------
|
|
C
|
|
C ALIST - LIST OF LEFT END POINTS OF ALL SUBINTERVALS
|
|
C CONSIDERED UP TO NOW
|
|
C BLIST - LIST OF RIGHT END POINTS OF ALL SUBINTERVALS
|
|
C CONSIDERED UP TO NOW
|
|
C RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
|
|
C (ALIST(I),BLIST(I))
|
|
C ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
|
|
C MAXERR - POINTER TO THE INTERVAL WITH LARGEST
|
|
C ERROR ESTIMATE
|
|
C ERRMAX - ELIST(MAXERR)
|
|
C AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
|
|
C ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
|
|
C ERRBND - REQUESTED ACCURACY MAX(EPSABS,EPSREL*
|
|
C ABS(RESULT))
|
|
C *****1 - VARIABLE FOR THE LEFT SUBINTERVAL
|
|
C *****2 - VARIABLE FOR THE RIGHT SUBINTERVAL
|
|
C LAST - INDEX FOR SUBDIVISION
|
|
C
|
|
C
|
|
C MACHINE DEPENDENT CONSTANTS
|
|
C ---------------------------
|
|
C
|
|
C EPMACH IS THE LARGEST RELATIVE SPACING.
|
|
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT QAWSE
|
|
EPMACH = R1MACH(4)
|
|
UFLOW = R1MACH(1)
|
|
C
|
|
C TEST ON VALIDITY OF PARAMETERS
|
|
C ------------------------------
|
|
C
|
|
IER = 6
|
|
NEVAL = 0
|
|
LAST = 0
|
|
RLIST(1) = 0.0E+00
|
|
ELIST(1) = 0.0E+00
|
|
IORD(1) = 0
|
|
RESULT = 0.0E+00
|
|
ABSERR = 0.0E+00
|
|
IF (B.LE.A.OR.(EPSABS.EQ.0.0E+00.AND.
|
|
1 EPSREL.LT.MAX(0.5E+02*EPMACH,0.5E-14)).OR.ALFA.LE.(-0.1E+01)
|
|
2 .OR.BETA.LE.(-0.1E+01).OR.INTEGR.LT.1.OR.INTEGR.GT.4.OR.
|
|
3 LIMIT.LT.2) GO TO 999
|
|
IER = 0
|
|
C
|
|
C COMPUTE THE MODIFIED CHEBYSHEV MOMENTS.
|
|
C
|
|
CALL QMOMO(ALFA,BETA,RI,RJ,RG,RH,INTEGR)
|
|
C
|
|
C INTEGRATE OVER THE INTERVALS (A,(A+B)/2)
|
|
C AND ((A+B)/2,B).
|
|
C
|
|
CENTRE = 0.5E+00*(B+A)
|
|
CALL QC25S(F,A,B,A,CENTRE,ALFA,BETA,RI,RJ,RG,RH,AREA1,
|
|
1 ERROR1,RESAS1,INTEGR,NEV)
|
|
NEVAL = NEV
|
|
CALL QC25S(F,A,B,CENTRE,B,ALFA,BETA,RI,RJ,RG,RH,AREA2,
|
|
1 ERROR2,RESAS2,INTEGR,NEV)
|
|
LAST = 2
|
|
NEVAL = NEVAL+NEV
|
|
RESULT = AREA1+AREA2
|
|
ABSERR = ERROR1+ERROR2
|
|
C
|
|
C TEST ON ACCURACY.
|
|
C
|
|
ERRBND = MAX(EPSABS,EPSREL*ABS(RESULT))
|
|
C
|
|
C INITIALIZATION
|
|
C --------------
|
|
C
|
|
IF(ERROR2.GT.ERROR1) GO TO 10
|
|
ALIST(1) = A
|
|
ALIST(2) = CENTRE
|
|
BLIST(1) = CENTRE
|
|
BLIST(2) = B
|
|
RLIST(1) = AREA1
|
|
RLIST(2) = AREA2
|
|
ELIST(1) = ERROR1
|
|
ELIST(2) = ERROR2
|
|
GO TO 20
|
|
10 ALIST(1) = CENTRE
|
|
ALIST(2) = A
|
|
BLIST(1) = B
|
|
BLIST(2) = CENTRE
|
|
RLIST(1) = AREA2
|
|
RLIST(2) = AREA1
|
|
ELIST(1) = ERROR2
|
|
ELIST(2) = ERROR1
|
|
20 IORD(1) = 1
|
|
IORD(2) = 2
|
|
IF(LIMIT.EQ.2) IER = 1
|
|
IF(ABSERR.LE.ERRBND.OR.IER.EQ.1) GO TO 999
|
|
ERRMAX = ELIST(1)
|
|
MAXERR = 1
|
|
NRMAX = 1
|
|
AREA = RESULT
|
|
ERRSUM = ABSERR
|
|
IROFF1 = 0
|
|
IROFF2 = 0
|
|
C
|
|
C MAIN DO-LOOP
|
|
C ------------
|
|
C
|
|
DO 60 LAST = 3,LIMIT
|
|
C
|
|
C BISECT THE SUBINTERVAL WITH LARGEST ERROR ESTIMATE.
|
|
C
|
|
A1 = ALIST(MAXERR)
|
|
B1 = 0.5E+00*(ALIST(MAXERR)+BLIST(MAXERR))
|
|
A2 = B1
|
|
B2 = BLIST(MAXERR)
|
|
C
|
|
CALL QC25S(F,A,B,A1,B1,ALFA,BETA,RI,RJ,RG,RH,AREA1,
|
|
1 ERROR1,RESAS1,INTEGR,NEV)
|
|
NEVAL = NEVAL+NEV
|
|
CALL QC25S(F,A,B,A2,B2,ALFA,BETA,RI,RJ,RG,RH,AREA2,
|
|
1 ERROR2,RESAS2,INTEGR,NEV)
|
|
NEVAL = NEVAL+NEV
|
|
C
|
|
C IMPROVE PREVIOUS APPROXIMATIONS INTEGRAL AND ERROR
|
|
C AND TEST FOR ACCURACY.
|
|
C
|
|
AREA12 = AREA1+AREA2
|
|
ERRO12 = ERROR1+ERROR2
|
|
ERRSUM = ERRSUM+ERRO12-ERRMAX
|
|
AREA = AREA+AREA12-RLIST(MAXERR)
|
|
IF(A.EQ.A1.OR.B.EQ.B2) GO TO 30
|
|
IF(RESAS1.EQ.ERROR1.OR.RESAS2.EQ.ERROR2) GO TO 30
|
|
C
|
|
C TEST FOR ROUNDOFF ERROR.
|
|
C
|
|
IF(ABS(RLIST(MAXERR)-AREA12).LT.0.1E-04*ABS(AREA12)
|
|
1 .AND.ERRO12.GE.0.99E+00*ERRMAX) IROFF1 = IROFF1+1
|
|
IF(LAST.GT.10.AND.ERRO12.GT.ERRMAX) IROFF2 = IROFF2+1
|
|
30 RLIST(MAXERR) = AREA1
|
|
RLIST(LAST) = AREA2
|
|
C
|
|
C TEST ON ACCURACY.
|
|
C
|
|
ERRBND = MAX(EPSABS,EPSREL*ABS(AREA))
|
|
IF(ERRSUM.LE.ERRBND) GO TO 35
|
|
C
|
|
C SET ERROR FLAG IN THE CASE THAT THE NUMBER OF INTERVAL
|
|
C BISECTIONS EXCEEDS LIMIT.
|
|
C
|
|
IF(LAST.EQ.LIMIT) IER = 1
|
|
C
|
|
C
|
|
C SET ERROR FLAG IN THE CASE OF ROUNDOFF ERROR.
|
|
C
|
|
IF(IROFF1.GE.6.OR.IROFF2.GE.20) IER = 2
|
|
C
|
|
C SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
|
|
C AT INTERIOR POINTS OF INTEGRATION RANGE.
|
|
C
|
|
IF(MAX(ABS(A1),ABS(B2)).LE.(0.1E+01+0.1E+03*EPMACH)*
|
|
1 (ABS(A2)+0.1E+04*UFLOW)) IER = 3
|
|
C
|
|
C APPEND THE NEWLY-CREATED INTERVALS TO THE LIST.
|
|
C
|
|
35 IF(ERROR2.GT.ERROR1) GO TO 40
|
|
ALIST(LAST) = A2
|
|
BLIST(MAXERR) = B1
|
|
BLIST(LAST) = B2
|
|
ELIST(MAXERR) = ERROR1
|
|
ELIST(LAST) = ERROR2
|
|
GO TO 50
|
|
40 ALIST(MAXERR) = A2
|
|
ALIST(LAST) = A1
|
|
BLIST(LAST) = B1
|
|
RLIST(MAXERR) = AREA2
|
|
RLIST(LAST) = AREA1
|
|
ELIST(MAXERR) = ERROR2
|
|
ELIST(LAST) = ERROR1
|
|
C
|
|
C CALL SUBROUTINE QPSRT TO MAINTAIN THE DESCENDING ORDERING
|
|
C IN THE LIST OF ERROR ESTIMATES AND SELECT THE
|
|
C SUBINTERVAL WITH LARGEST ERROR ESTIMATE (TO BE
|
|
C BISECTED NEXT).
|
|
C
|
|
50 CALL QPSRT(LIMIT,LAST,MAXERR,ERRMAX,ELIST,IORD,NRMAX)
|
|
C ***JUMP OUT OF DO-LOOP
|
|
IF (IER.NE.0.OR.ERRSUM.LE.ERRBND) GO TO 70
|
|
60 CONTINUE
|
|
C
|
|
C COMPUTE FINAL RESULT.
|
|
C ---------------------
|
|
C
|
|
70 RESULT = 0.0E+00
|
|
DO 80 K=1,LAST
|
|
RESULT = RESULT+RLIST(K)
|
|
80 CONTINUE
|
|
ABSERR = ERRSUM
|
|
999 RETURN
|
|
END
|