mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
359 lines
13 KiB
Fortran
359 lines
13 KiB
Fortran
*DECK QC25F
|
|
SUBROUTINE QC25F (F, A, B, OMEGA, INTEGR, NRMOM, MAXP1, KSAVE,
|
|
+ RESULT, ABSERR, NEVAL, RESABS, RESASC, MOMCOM, CHEBMO)
|
|
C***BEGIN PROLOGUE QC25F
|
|
C***PURPOSE To compute the integral I=Integral of F(X) over (A,B)
|
|
C Where W(X) = COS(OMEGA*X) Or (WX)=SIN(OMEGA*X)
|
|
C and to compute J=Integral of ABS(F) over (A,B). For small
|
|
C value of OMEGA or small intervals (A,B) 15-point GAUSS-
|
|
C KRONROD Rule used. Otherwise generalized CLENSHAW-CURTIS us
|
|
C***LIBRARY SLATEC (QUADPACK)
|
|
C***CATEGORY H2A2A2
|
|
C***TYPE SINGLE PRECISION (QC25F-S, DQC25F-D)
|
|
C***KEYWORDS CLENSHAW-CURTIS METHOD, GAUSS-KRONROD RULES,
|
|
C INTEGRATION RULES FOR FUNCTIONS WITH COS OR SIN FACTOR,
|
|
C QUADPACK, QUADRATURE
|
|
C***AUTHOR Piessens, Robert
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C de Doncker, Elise
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C***DESCRIPTION
|
|
C
|
|
C Integration rules for functions with COS or SIN factor
|
|
C Standard fortran subroutine
|
|
C Real version
|
|
C
|
|
C PARAMETERS
|
|
C ON ENTRY
|
|
C F - Real
|
|
C Function subprogram defining the integrand
|
|
C function F(X). The actual name for F needs to
|
|
C be declared E X T E R N A L in the calling program.
|
|
C
|
|
C A - Real
|
|
C Lower limit of integration
|
|
C
|
|
C B - Real
|
|
C Upper limit of integration
|
|
C
|
|
C OMEGA - Real
|
|
C Parameter in the WEIGHT function
|
|
C
|
|
C INTEGR - Integer
|
|
C Indicates which WEIGHT function is to be used
|
|
C INTEGR = 1 W(X) = COS(OMEGA*X)
|
|
C INTEGR = 2 W(X) = SIN(OMEGA*X)
|
|
C
|
|
C NRMOM - Integer
|
|
C The length of interval (A,B) is equal to the length
|
|
C of the original integration interval divided by
|
|
C 2**NRMOM (we suppose that the routine is used in an
|
|
C adaptive integration process, otherwise set
|
|
C NRMOM = 0). NRMOM must be zero at the first call.
|
|
C
|
|
C MAXP1 - Integer
|
|
C Gives an upper bound on the number of Chebyshev
|
|
C moments which can be stored, i.e. for the
|
|
C intervals of lengths ABS(BB-AA)*2**(-L),
|
|
C L = 0,1,2, ..., MAXP1-2.
|
|
C
|
|
C KSAVE - Integer
|
|
C Key which is one when the moments for the
|
|
C current interval have been computed
|
|
C
|
|
C ON RETURN
|
|
C RESULT - Real
|
|
C Approximation to the integral I
|
|
C
|
|
C ABSERR - Real
|
|
C Estimate of the modulus of the absolute
|
|
C error, which should equal or exceed ABS(I-RESULT)
|
|
C
|
|
C NEVAL - Integer
|
|
C Number of integrand evaluations
|
|
C
|
|
C RESABS - Real
|
|
C Approximation to the integral J
|
|
C
|
|
C RESASC - Real
|
|
C Approximation to the integral of ABS(F-I/(B-A))
|
|
C
|
|
C ON ENTRY AND RETURN
|
|
C MOMCOM - Integer
|
|
C For each interval length we need to compute the
|
|
C Chebyshev moments. MOMCOM counts the number of
|
|
C intervals for which these moments have already been
|
|
C computed. If NRMOM.LT.MOMCOM or KSAVE = 1, the
|
|
C Chebyshev moments for the interval (A,B) have
|
|
C already been computed and stored, otherwise we
|
|
C compute them and we increase MOMCOM.
|
|
C
|
|
C CHEBMO - Real
|
|
C Array of dimension at least (MAXP1,25) containing
|
|
C the modified Chebyshev moments for the first MOMCOM
|
|
C MOMCOM interval lengths
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED QCHEB, QK15W, QWGTF, R1MACH, SGTSL
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 810101 DATE WRITTEN
|
|
C 861211 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C***END PROLOGUE QC25F
|
|
C
|
|
REAL A,ABSERR,AC,AN,AN2,AS,ASAP,ASS,B,CENTR,CHEBMO,
|
|
1 CHEB12,CHEB24,CONC,CONS,COSPAR,D,QWGTF,
|
|
2 D1,R1MACH,D2,ESTC,ESTS,F,FVAL,HLGTH,OFLOW,OMEGA,PARINT,PAR2,
|
|
3 PAR22,P2,P3,P4,RESABS,RESASC,RESC12,RESC24,RESS12,RESS24,
|
|
4 RESULT,SINPAR,V,X
|
|
INTEGER I,IERS,INTEGR,ISYM,J,K,KSAVE,M,MAXP1,MOMCOM,NEVAL,
|
|
1 NOEQU,NOEQ1,NRMOM
|
|
C
|
|
DIMENSION CHEBMO(MAXP1,25),CHEB12(13),CHEB24(25),D(25),D1(25),
|
|
1 D2(25),FVAL(25),V(28),X(11)
|
|
C
|
|
EXTERNAL F, QWGTF
|
|
C
|
|
C THE VECTOR X CONTAINS THE VALUES COS(K*PI/24)
|
|
C K = 1, ...,11, TO BE USED FOR THE CHEBYSHEV EXPANSION OF F
|
|
C
|
|
SAVE X
|
|
DATA X(1),X(2),X(3),X(4),X(5),X(6),X(7),X(8),X(9),
|
|
1 X(10),X(11)/
|
|
2 0.9914448613738104E+00, 0.9659258262890683E+00,
|
|
3 0.9238795325112868E+00, 0.8660254037844386E+00,
|
|
4 0.7933533402912352E+00, 0.7071067811865475E+00,
|
|
5 0.6087614290087206E+00, 0.5000000000000000E+00,
|
|
6 0.3826834323650898E+00, 0.2588190451025208E+00,
|
|
7 0.1305261922200516E+00/
|
|
C
|
|
C LIST OF MAJOR VARIABLES
|
|
C -----------------------
|
|
C
|
|
C CENTR - MID POINT OF THE INTEGRATION INTERVAL
|
|
C HLGTH - HALF-LENGTH OF THE INTEGRATION INTERVAL
|
|
C FVAL - VALUE OF THE FUNCTION F AT THE POINTS
|
|
C (B-A)*0.5*COS(K*PI/12) + (B+A)*0.5,
|
|
C K = 0, ..., 24
|
|
C CHEB12 - COEFFICIENTS OF THE CHEBYSHEV SERIES EXPANSION
|
|
C OF DEGREE 12, FOR THE FUNCTION F, IN THE
|
|
C INTERVAL (A,B)
|
|
C CHEB24 - COEFFICIENTS OF THE CHEBYSHEV SERIES EXPANSION
|
|
C OF DEGREE 24, FOR THE FUNCTION F, IN THE
|
|
C INTERVAL (A,B)
|
|
C RESC12 - APPROXIMATION TO THE INTEGRAL OF
|
|
C COS(0.5*(B-A)*OMEGA*X)*F(0.5*(B-A)*X+0.5*(B+A))
|
|
C OVER (-1,+1), USING THE CHEBYSHEV SERIES
|
|
C EXPANSION OF DEGREE 12
|
|
C RESC24 - APPROXIMATION TO THE SAME INTEGRAL, USING THE
|
|
C CHEBYSHEV SERIES EXPANSION OF DEGREE 24
|
|
C RESS12 - THE ANALOGUE OF RESC12 FOR THE SINE
|
|
C RESS24 - THE ANALOGUE OF RESC24 FOR THE SINE
|
|
C
|
|
C
|
|
C MACHINE DEPENDENT CONSTANT
|
|
C --------------------------
|
|
C
|
|
C OFLOW IS THE LARGEST POSITIVE MAGNITUDE.
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT QC25F
|
|
OFLOW = R1MACH(2)
|
|
C
|
|
CENTR = 0.5E+00*(B+A)
|
|
HLGTH = 0.5E+00*(B-A)
|
|
PARINT = OMEGA*HLGTH
|
|
C
|
|
C COMPUTE THE INTEGRAL USING THE 15-POINT GAUSS-KRONROD
|
|
C FORMULA IF THE VALUE OF THE PARAMETER IN THE INTEGRAND
|
|
C IS SMALL.
|
|
C
|
|
IF(ABS(PARINT).GT.0.2E+01) GO TO 10
|
|
CALL QK15W(F,QWGTF,OMEGA,P2,P3,P4,INTEGR,A,B,RESULT,
|
|
1 ABSERR,RESABS,RESASC)
|
|
NEVAL = 15
|
|
GO TO 170
|
|
C
|
|
C COMPUTE THE INTEGRAL USING THE GENERALIZED CLENSHAW-
|
|
C CURTIS METHOD.
|
|
C
|
|
10 CONC = HLGTH*COS(CENTR*OMEGA)
|
|
CONS = HLGTH*SIN(CENTR*OMEGA)
|
|
RESASC = OFLOW
|
|
NEVAL = 25
|
|
C
|
|
C CHECK WHETHER THE CHEBYSHEV MOMENTS FOR THIS INTERVAL
|
|
C HAVE ALREADY BEEN COMPUTED.
|
|
C
|
|
IF(NRMOM.LT.MOMCOM.OR.KSAVE.EQ.1) GO TO 120
|
|
C
|
|
C COMPUTE A NEW SET OF CHEBYSHEV MOMENTS.
|
|
C
|
|
M = MOMCOM+1
|
|
PAR2 = PARINT*PARINT
|
|
PAR22 = PAR2+0.2E+01
|
|
SINPAR = SIN(PARINT)
|
|
COSPAR = COS(PARINT)
|
|
C
|
|
C COMPUTE THE CHEBYSHEV MOMENTS WITH RESPECT TO COSINE.
|
|
C
|
|
V(1) = 0.2E+01*SINPAR/PARINT
|
|
V(2) = (0.8E+01*COSPAR+(PAR2+PAR2-0.8E+01)*SINPAR/
|
|
1 PARINT)/PAR2
|
|
V(3) = (0.32E+02*(PAR2-0.12E+02)*COSPAR+(0.2E+01*
|
|
1 ((PAR2-0.80E+02)*PAR2+0.192E+03)*SINPAR)/
|
|
2 PARINT)/(PAR2*PAR2)
|
|
AC = 0.8E+01*COSPAR
|
|
AS = 0.24E+02*PARINT*SINPAR
|
|
IF(ABS(PARINT).GT.0.24E+02) GO TO 30
|
|
C
|
|
C COMPUTE THE CHEBYSHEV MOMENTS AS THE
|
|
C SOLUTIONS OF A BOUNDARY VALUE PROBLEM WITH 1
|
|
C INITIAL VALUE (V(3)) AND 1 END VALUE (COMPUTED
|
|
C USING AN ASYMPTOTIC FORMULA).
|
|
C
|
|
NOEQU = 25
|
|
NOEQ1 = NOEQU-1
|
|
AN = 0.6E+01
|
|
DO 20 K = 1,NOEQ1
|
|
AN2 = AN*AN
|
|
D(K) = -0.2E+01*(AN2-0.4E+01)*(PAR22-AN2-AN2)
|
|
D2(K) = (AN-0.1E+01)*(AN-0.2E+01)*PAR2
|
|
D1(K+1) = (AN+0.3E+01)*(AN+0.4E+01)*PAR2
|
|
V(K+3) = AS-(AN2-0.4E+01)*AC
|
|
AN = AN+0.2E+01
|
|
20 CONTINUE
|
|
AN2 = AN*AN
|
|
D(NOEQU) = -0.2E+01*(AN2-0.4E+01)*(PAR22-AN2-AN2)
|
|
V(NOEQU+3) = AS-(AN2-0.4E+01)*AC
|
|
V(4) = V(4)-0.56E+02*PAR2*V(3)
|
|
ASS = PARINT*SINPAR
|
|
ASAP = (((((0.210E+03*PAR2-0.1E+01)*COSPAR-(0.105E+03*PAR2
|
|
1 -0.63E+02)*ASS)/AN2-(0.1E+01-0.15E+02*PAR2)*COSPAR
|
|
2 +0.15E+02*ASS)/AN2-COSPAR+0.3E+01*ASS)/AN2-COSPAR)/AN2
|
|
V(NOEQU+3) = V(NOEQU+3)-0.2E+01*ASAP*PAR2*(AN-0.1E+01)*
|
|
1 (AN-0.2E+01)
|
|
C
|
|
C SOLVE THE TRIDIAGONAL SYSTEM BY MEANS OF GAUSSIAN
|
|
C ELIMINATION WITH PARTIAL PIVOTING.
|
|
C
|
|
CALL SGTSL(NOEQU,D1,D,D2,V(4),IERS)
|
|
GO TO 50
|
|
C
|
|
C COMPUTE THE CHEBYSHEV MOMENTS BY MEANS OF FORWARD
|
|
C RECURSION.
|
|
C
|
|
30 AN = 0.4E+01
|
|
DO 40 I = 4,13
|
|
AN2 = AN*AN
|
|
V(I) = ((AN2-0.4E+01)*(0.2E+01*(PAR22-AN2-AN2)*V(I-1)-AC)
|
|
1 +AS-PAR2*(AN+0.1E+01)*(AN+0.2E+01)*V(I-2))/
|
|
2 (PAR2*(AN-0.1E+01)*(AN-0.2E+01))
|
|
AN = AN+0.2E+01
|
|
40 CONTINUE
|
|
50 DO 60 J = 1,13
|
|
CHEBMO(M,2*J-1) = V(J)
|
|
60 CONTINUE
|
|
C
|
|
C COMPUTE THE CHEBYSHEV MOMENTS WITH RESPECT TO SINE.
|
|
C
|
|
V(1) = 0.2E+01*(SINPAR-PARINT*COSPAR)/PAR2
|
|
V(2) = (0.18E+02-0.48E+02/PAR2)*SINPAR/PAR2
|
|
1 +(-0.2E+01+0.48E+02/PAR2)*COSPAR/PARINT
|
|
AC = -0.24E+02*PARINT*COSPAR
|
|
AS = -0.8E+01*SINPAR
|
|
IF(ABS(PARINT).GT.0.24E+02) GO TO 80
|
|
C
|
|
C COMPUTE THE CHEBYSHEV MOMENTS AS THE
|
|
C SOLUTIONS OF A BOUNDARY VALUE PROBLEM WITH 1
|
|
C INITIAL VALUE (V(2)) AND 1 END VALUE (COMPUTED
|
|
C USING AN ASYMPTOTIC FORMULA).
|
|
C
|
|
AN = 0.5E+01
|
|
DO 70 K = 1,NOEQ1
|
|
AN2 = AN*AN
|
|
D(K) = -0.2E+01*(AN2-0.4E+01)*(PAR22-AN2-AN2)
|
|
D2(K) = (AN-0.1E+01)*(AN-0.2E+01)*PAR2
|
|
D1(K+1) = (AN+0.3E+01)*(AN+0.4E+01)*PAR2
|
|
V(K+2) = AC+(AN2-0.4E+01)*AS
|
|
AN = AN+0.2E+01
|
|
70 CONTINUE
|
|
AN2 = AN*AN
|
|
D(NOEQU) = -0.2E+01*(AN2-0.4E+01)*(PAR22-AN2-AN2)
|
|
V(NOEQU+2) = AC+(AN2-0.4E+01)*AS
|
|
V(3) = V(3)-0.42E+02*PAR2*V(2)
|
|
ASS = PARINT*COSPAR
|
|
ASAP = (((((0.105E+03*PAR2-0.63E+02)*ASS+(0.210E+03*PAR2
|
|
1 -0.1E+01)*SINPAR)/AN2+(0.15E+02*PAR2-0.1E+01)*SINPAR-
|
|
2 0.15E+02*ASS)/AN2-0.3E+01*ASS-SINPAR)/AN2-SINPAR)/AN2
|
|
V(NOEQU+2) = V(NOEQU+2)-0.2E+01*ASAP*PAR2*(AN-0.1E+01)
|
|
1 *(AN-0.2E+01)
|
|
C
|
|
C SOLVE THE TRIDIAGONAL SYSTEM BY MEANS OF GAUSSIAN
|
|
C ELIMINATION WITH PARTIAL PIVOTING.
|
|
C
|
|
CALL SGTSL(NOEQU,D1,D,D2,V(3),IERS)
|
|
GO TO 100
|
|
C
|
|
C COMPUTE THE CHEBYSHEV MOMENTS BY MEANS OF
|
|
C FORWARD RECURSION.
|
|
C
|
|
80 AN = 0.3E+01
|
|
DO 90 I = 3,12
|
|
AN2 = AN*AN
|
|
V(I) = ((AN2-0.4E+01)*(0.2E+01*(PAR22-AN2-AN2)*V(I-1)+AS)
|
|
1 +AC-PAR2*(AN+0.1E+01)*(AN+0.2E+01)*V(I-2))
|
|
2 /(PAR2*(AN-0.1E+01)*(AN-0.2E+01))
|
|
AN = AN+0.2E+01
|
|
90 CONTINUE
|
|
100 DO 110 J = 1,12
|
|
CHEBMO(M,2*J) = V(J)
|
|
110 CONTINUE
|
|
120 IF (NRMOM.LT.MOMCOM) M = NRMOM+1
|
|
IF (MOMCOM.LT.MAXP1-1.AND.NRMOM.GE.MOMCOM) MOMCOM = MOMCOM+1
|
|
C
|
|
C COMPUTE THE COEFFICIENTS OF THE CHEBYSHEV EXPANSIONS
|
|
C OF DEGREES 12 AND 24 OF THE FUNCTION F.
|
|
C
|
|
FVAL(1) = 0.5E+00*F(CENTR+HLGTH)
|
|
FVAL(13) = F(CENTR)
|
|
FVAL(25) = 0.5E+00*F(CENTR-HLGTH)
|
|
DO 130 I = 2,12
|
|
ISYM = 26-I
|
|
FVAL(I) = F(HLGTH*X(I-1)+CENTR)
|
|
FVAL(ISYM) = F(CENTR-HLGTH*X(I-1))
|
|
130 CONTINUE
|
|
CALL QCHEB(X,FVAL,CHEB12,CHEB24)
|
|
C
|
|
C COMPUTE THE INTEGRAL AND ERROR ESTIMATES.
|
|
C
|
|
RESC12 = CHEB12(13)*CHEBMO(M,13)
|
|
RESS12 = 0.0E+00
|
|
K = 11
|
|
DO 140 J = 1,6
|
|
RESC12 = RESC12+CHEB12(K)*CHEBMO(M,K)
|
|
RESS12 = RESS12+CHEB12(K+1)*CHEBMO(M,K+1)
|
|
K = K-2
|
|
140 CONTINUE
|
|
RESC24 = CHEB24(25)*CHEBMO(M,25)
|
|
RESS24 = 0.0E+00
|
|
RESABS = ABS(CHEB24(25))
|
|
K = 23
|
|
DO 150 J = 1,12
|
|
RESC24 = RESC24+CHEB24(K)*CHEBMO(M,K)
|
|
RESS24 = RESS24+CHEB24(K+1)*CHEBMO(M,K+1)
|
|
RESABS = ABS(CHEB24(K))+ABS(CHEB24(K+1))
|
|
K = K-2
|
|
150 CONTINUE
|
|
ESTC = ABS(RESC24-RESC12)
|
|
ESTS = ABS(RESS24-RESS12)
|
|
RESABS = RESABS*ABS(HLGTH)
|
|
IF(INTEGR.EQ.2) GO TO 160
|
|
RESULT = CONC*RESC24-CONS*RESS24
|
|
ABSERR = ABS(CONC*ESTC)+ABS(CONS*ESTS)
|
|
GO TO 170
|
|
160 RESULT = CONC*RESS24+CONS*RESC24
|
|
ABSERR = ABS(CONC*ESTS)+ABS(CONS*ESTC)
|
|
170 RETURN
|
|
END
|