OpenLibm/slatec/sdcst.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

105 lines
3.7 KiB
Fortran

*DECK SDCST
SUBROUTINE SDCST (MAXORD, MINT, ISWFLG, EL, TQ)
C***BEGIN PROLOGUE SDCST
C***SUBSIDIARY
C***PURPOSE SDCST sets coefficients used by the core integrator SDSTP.
C***LIBRARY SLATEC (SDRIVE)
C***TYPE SINGLE PRECISION (SDCST-S, DDCST-D, CDCST-C)
C***AUTHOR Kahaner, D. K., (NIST)
C National Institute of Standards and Technology
C Gaithersburg, MD 20899
C Sutherland, C. D., (LANL)
C Mail Stop D466
C Los Alamos National Laboratory
C Los Alamos, NM 87545
C***DESCRIPTION
C
C SDCST is called by SDNTL. The array EL determines the basic method.
C The array TQ is involved in adjusting the step size in relation
C to truncation error. EL and TQ depend upon MINT, and are calculated
C for orders 1 to MAXORD(.LE. 12). For each order NQ, the coefficients
C EL are calculated from the generating polynomial:
C L(T) = EL(1,NQ) + EL(2,NQ)*T + ... + EL(NQ+1,NQ)*T**NQ.
C For the implicit Adams methods, L(T) is given by
C dL/dT = (1+T)*(2+T)* ... *(NQ-1+T)/K, L(-1) = 0,
C where K = factorial(NQ-1).
C For the Gear methods,
C L(T) = (1+T)*(2+T)* ... *(NQ+T)/K,
C where K = factorial(NQ)*(1 + 1/2 + ... + 1/NQ).
C For each order NQ, there are three components of TQ.
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 790601 DATE WRITTEN
C 900329 Initial submission to SLATEC.
C***END PROLOGUE SDCST
REAL EL(13,12), FACTRL(12), GAMMA(14), SUM, TQ(3,12)
INTEGER I, ISWFLG, J, MAXORD, MINT, MXRD
C***FIRST EXECUTABLE STATEMENT SDCST
FACTRL(1) = 1.E0
DO 10 I = 2,MAXORD
10 FACTRL(I) = I*FACTRL(I-1)
C Compute Adams coefficients
IF (MINT .EQ. 1) THEN
GAMMA(1) = 1.E0
DO 40 I = 1,MAXORD+1
SUM = 0.E0
DO 30 J = 1,I
30 SUM = SUM - GAMMA(J)/(I-J+2)
40 GAMMA(I+1) = SUM
EL(1,1) = 1.E0
EL(2,1) = 1.E0
EL(2,2) = 1.E0
EL(3,2) = 1.E0
DO 60 J = 3,MAXORD
EL(2,J) = FACTRL(J-1)
DO 50 I = 3,J
50 EL(I,J) = (J-1)*EL(I,J-1) + EL(I-1,J-1)
60 EL(J+1,J) = 1.E0
DO 80 J = 2,MAXORD
EL(1,J) = EL(1,J-1) + GAMMA(J)
EL(2,J) = 1.E0
DO 80 I = 3,J+1
80 EL(I,J) = EL(I,J)/((I-1)*FACTRL(J-1))
DO 100 J = 1,MAXORD
TQ(1,J) = -1.E0/(FACTRL(J)*GAMMA(J))
TQ(2,J) = -1.E0/GAMMA(J+1)
100 TQ(3,J) = -1.E0/GAMMA(J+2)
C Compute Gear coefficients
ELSE IF (MINT .EQ. 2) THEN
EL(1,1) = 1.E0
EL(2,1) = 1.E0
DO 130 J = 2,MAXORD
EL(1,J) = FACTRL(J)
DO 120 I = 2,J
120 EL(I,J) = J*EL(I,J-1) + EL(I-1,J-1)
130 EL(J+1,J) = 1.E0
SUM = 1.E0
DO 150 J = 2,MAXORD
SUM = SUM + 1.E0/J
DO 150 I = 1,J+1
150 EL(I,J) = EL(I,J)/(FACTRL(J)*SUM)
DO 170 J = 1,MAXORD
IF (J .GT. 1) TQ(1,J) = 1.E0/FACTRL(J-1)
TQ(2,J) = (J+1)/EL(1,J)
170 TQ(3,J) = (J+2)/EL(1,J)
END IF
C Compute constants used in the stiffness test.
C These are the ratio of TQ(2,NQ) for the Gear
C methods to those for the Adams methods.
IF (ISWFLG .EQ. 3) THEN
MXRD = MIN(MAXORD, 5)
IF (MINT .EQ. 2) THEN
GAMMA(1) = 1.E0
DO 190 I = 1,MXRD
SUM = 0.E0
DO 180 J = 1,I
180 SUM = SUM - GAMMA(J)/(I-J+2)
190 GAMMA(I+1) = SUM
END IF
SUM = 1.E0
DO 200 I = 2,MXRD
SUM = SUM + 1.E0/I
200 EL(1+I,1) = -(I+1)*SUM*GAMMA(I+1)
END IF
RETURN
END