OpenLibm/slatec/sgedi.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

140 lines
4.1 KiB
Fortran

*DECK SGEDI
SUBROUTINE SGEDI (A, LDA, N, IPVT, DET, WORK, JOB)
C***BEGIN PROLOGUE SGEDI
C***PURPOSE Compute the determinant and inverse of a matrix using the
C factors computed by SGECO or SGEFA.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D2A1, D3A1
C***TYPE SINGLE PRECISION (SGEDI-S, DGEDI-D, CGEDI-C)
C***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX
C***AUTHOR Moler, C. B., (U. of New Mexico)
C***DESCRIPTION
C
C SGEDI computes the determinant and inverse of a matrix
C using the factors computed by SGECO or SGEFA.
C
C On Entry
C
C A REAL(LDA, N)
C the output from SGECO or SGEFA.
C
C LDA INTEGER
C the leading dimension of the array A .
C
C N INTEGER
C the order of the matrix A .
C
C IPVT INTEGER(N)
C the pivot vector from SGECO or SGEFA.
C
C WORK REAL(N)
C work vector. Contents destroyed.
C
C JOB INTEGER
C = 11 both determinant and inverse.
C = 01 inverse only.
C = 10 determinant only.
C
C On Return
C
C A inverse of original matrix if requested.
C Otherwise unchanged.
C
C DET REAL(2)
C determinant of original matrix if requested.
C Otherwise not referenced.
C Determinant = DET(1) * 10.0**DET(2)
C with 1.0 .LE. ABS(DET(1)) .LT. 10.0
C or DET(1) .EQ. 0.0 .
C
C Error Condition
C
C A division by zero will occur if the input factor contains
C a zero on the diagonal and the inverse is requested.
C It will not occur if the subroutines are called correctly
C and if SGECO has set RCOND .GT. 0.0 or SGEFA has set
C INFO .EQ. 0 .
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED SAXPY, SSCAL, SSWAP
C***REVISION HISTORY (YYMMDD)
C 780814 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE SGEDI
INTEGER LDA,N,IPVT(*),JOB
REAL A(LDA,*),DET(2),WORK(*)
C
REAL T
REAL TEN
INTEGER I,J,K,KB,KP1,L,NM1
C***FIRST EXECUTABLE STATEMENT SGEDI
C
C COMPUTE DETERMINANT
C
IF (JOB/10 .EQ. 0) GO TO 70
DET(1) = 1.0E0
DET(2) = 0.0E0
TEN = 10.0E0
DO 50 I = 1, N
IF (IPVT(I) .NE. I) DET(1) = -DET(1)
DET(1) = A(I,I)*DET(1)
IF (DET(1) .EQ. 0.0E0) GO TO 60
10 IF (ABS(DET(1)) .GE. 1.0E0) GO TO 20
DET(1) = TEN*DET(1)
DET(2) = DET(2) - 1.0E0
GO TO 10
20 CONTINUE
30 IF (ABS(DET(1)) .LT. TEN) GO TO 40
DET(1) = DET(1)/TEN
DET(2) = DET(2) + 1.0E0
GO TO 30
40 CONTINUE
50 CONTINUE
60 CONTINUE
70 CONTINUE
C
C COMPUTE INVERSE(U)
C
IF (MOD(JOB,10) .EQ. 0) GO TO 150
DO 100 K = 1, N
A(K,K) = 1.0E0/A(K,K)
T = -A(K,K)
CALL SSCAL(K-1,T,A(1,K),1)
KP1 = K + 1
IF (N .LT. KP1) GO TO 90
DO 80 J = KP1, N
T = A(K,J)
A(K,J) = 0.0E0
CALL SAXPY(K,T,A(1,K),1,A(1,J),1)
80 CONTINUE
90 CONTINUE
100 CONTINUE
C
C FORM INVERSE(U)*INVERSE(L)
C
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 140
DO 130 KB = 1, NM1
K = N - KB
KP1 = K + 1
DO 110 I = KP1, N
WORK(I) = A(I,K)
A(I,K) = 0.0E0
110 CONTINUE
DO 120 J = KP1, N
T = WORK(J)
CALL SAXPY(N,T,A(1,J),1,A(1,K),1)
120 CONTINUE
L = IPVT(K)
IF (L .NE. K) CALL SSWAP(N,A(1,K),1,A(1,L),1)
130 CONTINUE
140 CONTINUE
150 CONTINUE
RETURN
END