mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
82 lines
2.4 KiB
Fortran
82 lines
2.4 KiB
Fortran
*DECK SPBDI
|
|
SUBROUTINE SPBDI (ABD, LDA, N, M, DET)
|
|
C***BEGIN PROLOGUE SPBDI
|
|
C***PURPOSE Compute the determinant of a symmetric positive definite
|
|
C band matrix using the factors computed by SPBCO or SPBFA.
|
|
C***LIBRARY SLATEC (LINPACK)
|
|
C***CATEGORY D3B2
|
|
C***TYPE SINGLE PRECISION (SPBDI-S, DPBDI-D, CPBDI-C)
|
|
C***KEYWORDS BANDED, DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK,
|
|
C MATRIX, POSITIVE DEFINITE
|
|
C***AUTHOR Moler, C. B., (U. of New Mexico)
|
|
C***DESCRIPTION
|
|
C
|
|
C SPBDI computes the determinant
|
|
C of a real symmetric positive definite band matrix
|
|
C using the factors computed by SPBCO or SPBFA.
|
|
C If the inverse is needed, use SPBSL N times.
|
|
C
|
|
C On Entry
|
|
C
|
|
C ABD REAL(LDA, N)
|
|
C the output from SPBCO or SPBFA.
|
|
C
|
|
C LDA INTEGER
|
|
C the leading dimension of the array ABD .
|
|
C
|
|
C N INTEGER
|
|
C the order of the matrix A .
|
|
C
|
|
C M INTEGER
|
|
C the number of diagonals above the main diagonal.
|
|
C
|
|
C On Return
|
|
C
|
|
C DET REAL(2)
|
|
C determinant of original matrix in the form
|
|
C Determinant = DET(1) * 10.0**DET(2)
|
|
C with 1.0 .LE. DET(1) .LT. 10.0
|
|
C or DET(1) .EQ. 0.0 .
|
|
C
|
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
|
C***ROUTINES CALLED (NONE)
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 780814 DATE WRITTEN
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
|
C (WRB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE SPBDI
|
|
INTEGER LDA,N,M
|
|
REAL ABD(LDA,*)
|
|
REAL DET(2)
|
|
C
|
|
REAL S
|
|
INTEGER I
|
|
C***FIRST EXECUTABLE STATEMENT SPBDI
|
|
C
|
|
C COMPUTE DETERMINANT
|
|
C
|
|
DET(1) = 1.0E0
|
|
DET(2) = 0.0E0
|
|
S = 10.0E0
|
|
DO 50 I = 1, N
|
|
DET(1) = ABD(M+1,I)**2*DET(1)
|
|
IF (DET(1) .EQ. 0.0E0) GO TO 60
|
|
10 IF (DET(1) .GE. 1.0E0) GO TO 20
|
|
DET(1) = S*DET(1)
|
|
DET(2) = DET(2) - 1.0E0
|
|
GO TO 10
|
|
20 CONTINUE
|
|
30 IF (DET(1) .LT. S) GO TO 40
|
|
DET(1) = DET(1)/S
|
|
DET(2) = DET(2) + 1.0E0
|
|
GO TO 30
|
|
40 CONTINUE
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
RETURN
|
|
END
|