mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
208 lines
8.2 KiB
Fortran
208 lines
8.2 KiB
Fortran
*DECK SS2Y
|
|
SUBROUTINE SS2Y (N, NELT, IA, JA, A, ISYM)
|
|
C***BEGIN PROLOGUE SS2Y
|
|
C***PURPOSE SLAP Triad to SLAP Column Format Converter.
|
|
C Routine to convert from the SLAP Triad to SLAP Column
|
|
C format.
|
|
C***LIBRARY SLATEC (SLAP)
|
|
C***CATEGORY D1B9
|
|
C***TYPE SINGLE PRECISION (SS2Y-S, DS2Y-D)
|
|
C***KEYWORDS LINEAR SYSTEM, SLAP SPARSE
|
|
C***AUTHOR Seager, Mark K., (LLNL)
|
|
C Lawrence Livermore National Laboratory
|
|
C PO BOX 808, L-60
|
|
C Livermore, CA 94550 (510) 423-3141
|
|
C seager@llnl.gov
|
|
C***DESCRIPTION
|
|
C
|
|
C *Usage:
|
|
C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
|
|
C REAL A(NELT)
|
|
C
|
|
C CALL SS2Y( N, NELT, IA, JA, A, ISYM )
|
|
C
|
|
C *Arguments:
|
|
C N :IN Integer
|
|
C Order of the Matrix.
|
|
C NELT :IN Integer.
|
|
C Number of non-zeros stored in A.
|
|
C IA :INOUT Integer IA(NELT).
|
|
C JA :INOUT Integer JA(NELT).
|
|
C A :INOUT Real A(NELT).
|
|
C These arrays should hold the matrix A in either the SLAP
|
|
C Triad format or the SLAP Column format. See "Description",
|
|
C below. If the SLAP Triad format is used, this format is
|
|
C translated to the SLAP Column format by this routine.
|
|
C ISYM :IN Integer.
|
|
C Flag to indicate symmetric storage format.
|
|
C If ISYM=0, all non-zero entries of the matrix are stored.
|
|
C If ISYM=1, the matrix is symmetric, and only the lower
|
|
C triangle of the matrix is stored.
|
|
C
|
|
C *Description:
|
|
C The Sparse Linear Algebra Package (SLAP) utilizes two matrix
|
|
C data structures: 1) the SLAP Triad format or 2) the SLAP
|
|
C Column format. The user can hand this routine either of the
|
|
C of these data structures. If the SLAP Triad format is give
|
|
C as input then this routine transforms it into SLAP Column
|
|
C format. The way this routine tells which format is given as
|
|
C input is to look at JA(N+1). If JA(N+1) = NELT+1 then we
|
|
C have the SLAP Column format. If that equality does not hold
|
|
C then it is assumed that the IA, JA, A arrays contain the
|
|
C SLAP Triad format.
|
|
C
|
|
C =================== S L A P Triad format ===================
|
|
C This routine requires that the matrix A be stored in the
|
|
C SLAP Triad format. In this format only the non-zeros are
|
|
C stored. They may appear in *ANY* order. The user supplies
|
|
C three arrays of length NELT, where NELT is the number of
|
|
C non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
|
|
C each non-zero the user puts the row and column index of that
|
|
C matrix element in the IA and JA arrays. The value of the
|
|
C non-zero matrix element is placed in the corresponding
|
|
C location of the A array. This is an extremely easy data
|
|
C structure to generate. On the other hand it is not too
|
|
C efficient on vector computers for the iterative solution of
|
|
C linear systems. Hence, SLAP changes this input data
|
|
C structure to the SLAP Column format for the iteration (but
|
|
C does not change it back).
|
|
C
|
|
C Here is an example of the SLAP Triad storage format for a
|
|
C 5x5 Matrix. Recall that the entries may appear in any order.
|
|
C
|
|
C 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
|
|
C 1 2 3 4 5 6 7 8 9 10 11
|
|
C |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
|
|
C |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
|
|
C | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
|
|
C | 0 0 0 44 0|
|
|
C |51 0 53 0 55|
|
|
C
|
|
C =================== S L A P Column format ==================
|
|
C
|
|
C This routine requires that the matrix A be stored in the
|
|
C SLAP Column format. In this format the non-zeros are stored
|
|
C counting down columns (except for the diagonal entry, which
|
|
C must appear first in each "column") and are stored in the
|
|
C real array A. In other words, for each column in the matrix
|
|
C put the diagonal entry in A. Then put in the other non-zero
|
|
C elements going down the column (except the diagonal) in
|
|
C order. The IA array holds the row index for each non-zero.
|
|
C The JA array holds the offsets into the IA, A arrays for the
|
|
C beginning of each column. That is, IA(JA(ICOL)),
|
|
C A(JA(ICOL)) points to the beginning of the ICOL-th column in
|
|
C IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
|
|
C end of the ICOL-th column. Note that we always have
|
|
C JA(N+1) = NELT+1, where N is the number of columns in the
|
|
C matrix and NELT is the number of non-zeros in the matrix.
|
|
C
|
|
C Here is an example of the SLAP Column storage format for a
|
|
C 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
|
|
C column):
|
|
C
|
|
C 5x5 Matrix SLAP Column format for 5x5 matrix on left.
|
|
C 1 2 3 4 5 6 7 8 9 10 11
|
|
C |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
|
|
C |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
|
|
C | 0 0 33 0 35| JA: 1 4 6 8 9 12
|
|
C | 0 0 0 44 0|
|
|
C |51 0 53 0 55|
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED QS2I1R
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 871119 DATE WRITTEN
|
|
C 881213 Previous REVISION DATE
|
|
C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
|
|
C 890922 Numerous changes to prologue to make closer to SLATEC
|
|
C standard. (FNF)
|
|
C 890929 Numerous changes to reduce SP/DP differences. (FNF)
|
|
C 910411 Prologue converted to Version 4.0 format. (BAB)
|
|
C 910502 Corrected C***FIRST EXECUTABLE STATEMENT line. (FNF)
|
|
C 920511 Added complete declaration section. (WRB)
|
|
C 930701 Updated CATEGORY section. (FNF, WRB)
|
|
C***END PROLOGUE SS2Y
|
|
C .. Scalar Arguments ..
|
|
INTEGER ISYM, N, NELT
|
|
C .. Array Arguments ..
|
|
REAL A(NELT)
|
|
INTEGER IA(NELT), JA(NELT)
|
|
C .. Local Scalars ..
|
|
REAL TEMP
|
|
INTEGER I, IBGN, ICOL, IEND, ITEMP, J
|
|
C .. External Subroutines ..
|
|
EXTERNAL QS2I1R
|
|
C***FIRST EXECUTABLE STATEMENT SS2Y
|
|
C
|
|
C Check to see if the (IA,JA,A) arrays are in SLAP Column
|
|
C format. If it's not then transform from SLAP Triad.
|
|
C
|
|
IF( JA(N+1).EQ.NELT+1 ) RETURN
|
|
C
|
|
C Sort into ascending order by COLUMN (on the ja array).
|
|
C This will line up the columns.
|
|
C
|
|
CALL QS2I1R( JA, IA, A, NELT, 1 )
|
|
C
|
|
C Loop over each column to see where the column indices change
|
|
C in the column index array ja. This marks the beginning of the
|
|
C next column.
|
|
C
|
|
CVD$R NOVECTOR
|
|
JA(1) = 1
|
|
DO 20 ICOL = 1, N-1
|
|
DO 10 J = JA(ICOL)+1, NELT
|
|
IF( JA(J).NE.ICOL ) THEN
|
|
JA(ICOL+1) = J
|
|
GOTO 20
|
|
ENDIF
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
JA(N+1) = NELT+1
|
|
C
|
|
C Mark the n+2 element so that future calls to a SLAP routine
|
|
C utilizing the YSMP-Column storage format will be able to tell.
|
|
C
|
|
JA(N+2) = 0
|
|
C
|
|
C Now loop through the IA array making sure that the diagonal
|
|
C matrix element appears first in the column. Then sort the
|
|
C rest of the column in ascending order.
|
|
C
|
|
DO 70 ICOL = 1, N
|
|
IBGN = JA(ICOL)
|
|
IEND = JA(ICOL+1)-1
|
|
DO 30 I = IBGN, IEND
|
|
IF( IA(I).EQ.ICOL ) THEN
|
|
C
|
|
C Swap the diagonal element with the first element in the
|
|
C column.
|
|
C
|
|
ITEMP = IA(I)
|
|
IA(I) = IA(IBGN)
|
|
IA(IBGN) = ITEMP
|
|
TEMP = A(I)
|
|
A(I) = A(IBGN)
|
|
A(IBGN) = TEMP
|
|
GOTO 40
|
|
ENDIF
|
|
30 CONTINUE
|
|
40 IBGN = IBGN + 1
|
|
IF( IBGN.LT.IEND ) THEN
|
|
DO 60 I = IBGN, IEND
|
|
DO 50 J = I+1, IEND
|
|
IF( IA(I).GT.IA(J) ) THEN
|
|
ITEMP = IA(I)
|
|
IA(I) = IA(J)
|
|
IA(J) = ITEMP
|
|
TEMP = A(I)
|
|
A(I) = A(J)
|
|
A(J) = TEMP
|
|
ENDIF
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
ENDIF
|
|
70 CONTINUE
|
|
RETURN
|
|
C------------- LAST LINE OF SS2Y FOLLOWS ----------------------------
|
|
END
|