mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
167 lines
5 KiB
Fortran
167 lines
5 KiB
Fortran
*DECK TQL1
|
|
SUBROUTINE TQL1 (N, D, E, IERR)
|
|
C***BEGIN PROLOGUE TQL1
|
|
C***PURPOSE Compute the eigenvalues of symmetric tridiagonal matrix by
|
|
C the QL method.
|
|
C***LIBRARY SLATEC (EISPACK)
|
|
C***CATEGORY D4A5, D4C2A
|
|
C***TYPE SINGLE PRECISION (TQL1-S)
|
|
C***KEYWORDS EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX, EISPACK,
|
|
C QL METHOD
|
|
C***AUTHOR Smith, B. T., et al.
|
|
C***DESCRIPTION
|
|
C
|
|
C This subroutine is a translation of the ALGOL procedure TQL1,
|
|
C NUM. MATH. 11, 293-306(1968) by Bowdler, Martin, Reinsch, and
|
|
C Wilkinson.
|
|
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971).
|
|
C
|
|
C This subroutine finds the eigenvalues of a SYMMETRIC
|
|
C TRIDIAGONAL matrix by the QL method.
|
|
C
|
|
C On Input
|
|
C
|
|
C N is the order of the matrix. N is an INTEGER variable.
|
|
C
|
|
C D contains the diagonal elements of the symmetric tridiagonal
|
|
C matrix. D is a one-dimensional REAL array, dimensioned D(N).
|
|
C
|
|
C E contains the subdiagonal elements of the symmetric
|
|
C tridiagonal matrix in its last N-1 positions. E(1) is
|
|
C arbitrary. E is a one-dimensional REAL array, dimensioned
|
|
C E(N).
|
|
C
|
|
C On Output
|
|
C
|
|
C D contains the eigenvalues in ascending order. If an
|
|
C error exit is made, the eigenvalues are correct and
|
|
C ordered for indices 1, 2, ..., IERR-1, but may not be
|
|
C the smallest eigenvalues.
|
|
C
|
|
C E has been destroyed.
|
|
C
|
|
C IERR is an INTEGER flag set to
|
|
C Zero for normal return,
|
|
C J if the J-th eigenvalue has not been
|
|
C determined after 30 iterations.
|
|
C
|
|
C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
|
|
C
|
|
C Questions and comments should be directed to B. S. Garbow,
|
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
|
C ------------------------------------------------------------------
|
|
C
|
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
|
C 1976.
|
|
C***ROUTINES CALLED PYTHAG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 760101 DATE WRITTEN
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE TQL1
|
|
C
|
|
INTEGER I,J,L,M,N,II,L1,L2,MML,IERR
|
|
REAL D(*),E(*)
|
|
REAL B,C,C2,C3,DL1,EL1,F,G,H,P,R,S,S2
|
|
REAL PYTHAG
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT TQL1
|
|
IERR = 0
|
|
IF (N .EQ. 1) GO TO 1001
|
|
C
|
|
DO 100 I = 2, N
|
|
100 E(I-1) = E(I)
|
|
C
|
|
F = 0.0E0
|
|
B = 0.0E0
|
|
E(N) = 0.0E0
|
|
C
|
|
DO 290 L = 1, N
|
|
J = 0
|
|
H = ABS(D(L)) + ABS(E(L))
|
|
IF (B .LT. H) B = H
|
|
C .......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT ..........
|
|
DO 110 M = L, N
|
|
IF (B + ABS(E(M)) .EQ. B) GO TO 120
|
|
C .......... E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
|
|
C THROUGH THE BOTTOM OF THE LOOP ..........
|
|
110 CONTINUE
|
|
C
|
|
120 IF (M .EQ. L) GO TO 210
|
|
130 IF (J .EQ. 30) GO TO 1000
|
|
J = J + 1
|
|
C .......... FORM SHIFT ..........
|
|
L1 = L + 1
|
|
L2 = L1 + 1
|
|
G = D(L)
|
|
P = (D(L1) - G) / (2.0E0 * E(L))
|
|
R = PYTHAG(P,1.0E0)
|
|
D(L) = E(L) / (P + SIGN(R,P))
|
|
D(L1) = E(L) * (P + SIGN(R,P))
|
|
DL1 = D(L1)
|
|
H = G - D(L)
|
|
IF (L2 .GT. N) GO TO 145
|
|
C
|
|
DO 140 I = L2, N
|
|
140 D(I) = D(I) - H
|
|
C
|
|
145 F = F + H
|
|
C .......... QL TRANSFORMATION ..........
|
|
P = D(M)
|
|
C = 1.0E0
|
|
C2 = C
|
|
EL1 = E(L1)
|
|
S = 0.0E0
|
|
MML = M - L
|
|
C .......... FOR I=M-1 STEP -1 UNTIL L DO -- ..........
|
|
DO 200 II = 1, MML
|
|
C3 = C2
|
|
C2 = C
|
|
S2 = S
|
|
I = M - II
|
|
G = C * E(I)
|
|
H = C * P
|
|
IF (ABS(P) .LT. ABS(E(I))) GO TO 150
|
|
C = E(I) / P
|
|
R = SQRT(C*C+1.0E0)
|
|
E(I+1) = S * P * R
|
|
S = C / R
|
|
C = 1.0E0 / R
|
|
GO TO 160
|
|
150 C = P / E(I)
|
|
R = SQRT(C*C+1.0E0)
|
|
E(I+1) = S * E(I) * R
|
|
S = 1.0E0 / R
|
|
C = C * S
|
|
160 P = C * D(I) - S * G
|
|
D(I+1) = H + S * (C * G + S * D(I))
|
|
200 CONTINUE
|
|
C
|
|
P = -S * S2 * C3 * EL1 * E(L) / DL1
|
|
E(L) = S * P
|
|
D(L) = C * P
|
|
IF (B + ABS(E(L)) .GT. B) GO TO 130
|
|
210 P = D(L) + F
|
|
C .......... ORDER EIGENVALUES ..........
|
|
IF (L .EQ. 1) GO TO 250
|
|
C .......... FOR I=L STEP -1 UNTIL 2 DO -- ..........
|
|
DO 230 II = 2, L
|
|
I = L + 2 - II
|
|
IF (P .GE. D(I-1)) GO TO 270
|
|
D(I) = D(I-1)
|
|
230 CONTINUE
|
|
C
|
|
250 I = 1
|
|
270 D(I) = P
|
|
290 CONTINUE
|
|
C
|
|
GO TO 1001
|
|
C .......... SET ERROR -- NO CONVERGENCE TO AN
|
|
C EIGENVALUE AFTER 30 ITERATIONS ..........
|
|
1000 IERR = L
|
|
1001 RETURN
|
|
END
|