mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
165 lines
5.1 KiB
Fortran
165 lines
5.1 KiB
Fortran
*DECK TQLRAT
|
|
SUBROUTINE TQLRAT (N, D, E2, IERR)
|
|
C***BEGIN PROLOGUE TQLRAT
|
|
C***PURPOSE Compute the eigenvalues of symmetric tridiagonal matrix
|
|
C using a rational variant of the QL method.
|
|
C***LIBRARY SLATEC (EISPACK)
|
|
C***CATEGORY D4A5, D4C2A
|
|
C***TYPE SINGLE PRECISION (TQLRAT-S)
|
|
C***KEYWORDS EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX, EISPACK,
|
|
C QL METHOD
|
|
C***AUTHOR Smith, B. T., et al.
|
|
C***DESCRIPTION
|
|
C
|
|
C This subroutine is a translation of the ALGOL procedure TQLRAT.
|
|
C
|
|
C This subroutine finds the eigenvalues of a SYMMETRIC
|
|
C TRIDIAGONAL matrix by the rational QL method.
|
|
C
|
|
C On Input
|
|
C
|
|
C N is the order of the matrix. N is an INTEGER variable.
|
|
C
|
|
C D contains the diagonal elements of the symmetric tridiagonal
|
|
C matrix. D is a one-dimensional REAL array, dimensioned D(N).
|
|
C
|
|
C E2 contains the squares of the subdiagonal elements of the
|
|
C symmetric tridiagonal matrix in its last N-1 positions.
|
|
C E2(1) is arbitrary. E2 is a one-dimensional REAL array,
|
|
C dimensioned E2(N).
|
|
C
|
|
C On Output
|
|
C
|
|
C D contains the eigenvalues in ascending order. If an
|
|
C error exit is made, the eigenvalues are correct and
|
|
C ordered for indices 1, 2, ..., IERR-1, but may not be
|
|
C the smallest eigenvalues.
|
|
C
|
|
C E2 has been destroyed.
|
|
C
|
|
C IERR is an INTEGER flag set to
|
|
C Zero for normal return,
|
|
C J if the J-th eigenvalue has not been
|
|
C determined after 30 iterations.
|
|
C
|
|
C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
|
|
C
|
|
C Questions and comments should be directed to B. S. Garbow,
|
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
|
C ------------------------------------------------------------------
|
|
C
|
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
|
C 1976.
|
|
C C. H. Reinsch, Eigenvalues of a real, symmetric, tri-
|
|
C diagonal matrix, Algorithm 464, Communications of the
|
|
C ACM 16, 11 (November 1973), pp. 689.
|
|
C***ROUTINES CALLED PYTHAG, R1MACH
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 760101 DATE WRITTEN
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE TQLRAT
|
|
C
|
|
INTEGER I,J,L,M,N,II,L1,MML,IERR
|
|
REAL D(*),E2(*)
|
|
REAL B,C,F,G,H,P,R,S,MACHEP
|
|
REAL PYTHAG
|
|
LOGICAL FIRST
|
|
C
|
|
SAVE FIRST, MACHEP
|
|
DATA FIRST /.TRUE./
|
|
C***FIRST EXECUTABLE STATEMENT TQLRAT
|
|
IF (FIRST) THEN
|
|
MACHEP = R1MACH(4)
|
|
ENDIF
|
|
FIRST = .FALSE.
|
|
C
|
|
IERR = 0
|
|
IF (N .EQ. 1) GO TO 1001
|
|
C
|
|
DO 100 I = 2, N
|
|
100 E2(I-1) = E2(I)
|
|
C
|
|
F = 0.0E0
|
|
B = 0.0E0
|
|
E2(N) = 0.0E0
|
|
C
|
|
DO 290 L = 1, N
|
|
J = 0
|
|
H = MACHEP * (ABS(D(L)) + SQRT(E2(L)))
|
|
IF (B .GT. H) GO TO 105
|
|
B = H
|
|
C = B * B
|
|
C .......... LOOK FOR SMALL SQUARED SUB-DIAGONAL ELEMENT ..........
|
|
105 DO 110 M = L, N
|
|
IF (E2(M) .LE. C) GO TO 120
|
|
C .......... E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
|
|
C THROUGH THE BOTTOM OF THE LOOP ..........
|
|
110 CONTINUE
|
|
C
|
|
120 IF (M .EQ. L) GO TO 210
|
|
130 IF (J .EQ. 30) GO TO 1000
|
|
J = J + 1
|
|
C .......... FORM SHIFT ..........
|
|
L1 = L + 1
|
|
S = SQRT(E2(L))
|
|
G = D(L)
|
|
P = (D(L1) - G) / (2.0E0 * S)
|
|
R = PYTHAG(P,1.0E0)
|
|
D(L) = S / (P + SIGN(R,P))
|
|
H = G - D(L)
|
|
C
|
|
DO 140 I = L1, N
|
|
140 D(I) = D(I) - H
|
|
C
|
|
F = F + H
|
|
C .......... RATIONAL QL TRANSFORMATION ..........
|
|
G = D(M)
|
|
IF (G .EQ. 0.0E0) G = B
|
|
H = G
|
|
S = 0.0E0
|
|
MML = M - L
|
|
C .......... FOR I=M-1 STEP -1 UNTIL L DO -- ..........
|
|
DO 200 II = 1, MML
|
|
I = M - II
|
|
P = G * H
|
|
R = P + E2(I)
|
|
E2(I+1) = S * R
|
|
S = E2(I) / R
|
|
D(I+1) = H + S * (H + D(I))
|
|
G = D(I) - E2(I) / G
|
|
IF (G .EQ. 0.0E0) G = B
|
|
H = G * P / R
|
|
200 CONTINUE
|
|
C
|
|
E2(L) = S * G
|
|
D(L) = H
|
|
C .......... GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST ..........
|
|
IF (H .EQ. 0.0E0) GO TO 210
|
|
IF (ABS(E2(L)) .LE. ABS(C/H)) GO TO 210
|
|
E2(L) = H * E2(L)
|
|
IF (E2(L) .NE. 0.0E0) GO TO 130
|
|
210 P = D(L) + F
|
|
C .......... ORDER EIGENVALUES ..........
|
|
IF (L .EQ. 1) GO TO 250
|
|
C .......... FOR I=L STEP -1 UNTIL 2 DO -- ..........
|
|
DO 230 II = 2, L
|
|
I = L + 2 - II
|
|
IF (P .GE. D(I-1)) GO TO 270
|
|
D(I) = D(I-1)
|
|
230 CONTINUE
|
|
C
|
|
250 I = 1
|
|
270 D(I) = P
|
|
290 CONTINUE
|
|
C
|
|
GO TO 1001
|
|
C .......... SET ERROR -- NO CONVERGENCE TO AN
|
|
C EIGENVALUE AFTER 30 ITERATIONS ..........
|
|
1000 IERR = L
|
|
1001 RETURN
|
|
END
|