OpenLibm/slatec/tqlrat.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

165 lines
5.1 KiB
Fortran

*DECK TQLRAT
SUBROUTINE TQLRAT (N, D, E2, IERR)
C***BEGIN PROLOGUE TQLRAT
C***PURPOSE Compute the eigenvalues of symmetric tridiagonal matrix
C using a rational variant of the QL method.
C***LIBRARY SLATEC (EISPACK)
C***CATEGORY D4A5, D4C2A
C***TYPE SINGLE PRECISION (TQLRAT-S)
C***KEYWORDS EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX, EISPACK,
C QL METHOD
C***AUTHOR Smith, B. T., et al.
C***DESCRIPTION
C
C This subroutine is a translation of the ALGOL procedure TQLRAT.
C
C This subroutine finds the eigenvalues of a SYMMETRIC
C TRIDIAGONAL matrix by the rational QL method.
C
C On Input
C
C N is the order of the matrix. N is an INTEGER variable.
C
C D contains the diagonal elements of the symmetric tridiagonal
C matrix. D is a one-dimensional REAL array, dimensioned D(N).
C
C E2 contains the squares of the subdiagonal elements of the
C symmetric tridiagonal matrix in its last N-1 positions.
C E2(1) is arbitrary. E2 is a one-dimensional REAL array,
C dimensioned E2(N).
C
C On Output
C
C D contains the eigenvalues in ascending order. If an
C error exit is made, the eigenvalues are correct and
C ordered for indices 1, 2, ..., IERR-1, but may not be
C the smallest eigenvalues.
C
C E2 has been destroyed.
C
C IERR is an INTEGER flag set to
C Zero for normal return,
C J if the J-th eigenvalue has not been
C determined after 30 iterations.
C
C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
C
C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C ------------------------------------------------------------------
C
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
C system Routines - EISPACK Guide, Springer-Verlag,
C 1976.
C C. H. Reinsch, Eigenvalues of a real, symmetric, tri-
C diagonal matrix, Algorithm 464, Communications of the
C ACM 16, 11 (November 1973), pp. 689.
C***ROUTINES CALLED PYTHAG, R1MACH
C***REVISION HISTORY (YYMMDD)
C 760101 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE TQLRAT
C
INTEGER I,J,L,M,N,II,L1,MML,IERR
REAL D(*),E2(*)
REAL B,C,F,G,H,P,R,S,MACHEP
REAL PYTHAG
LOGICAL FIRST
C
SAVE FIRST, MACHEP
DATA FIRST /.TRUE./
C***FIRST EXECUTABLE STATEMENT TQLRAT
IF (FIRST) THEN
MACHEP = R1MACH(4)
ENDIF
FIRST = .FALSE.
C
IERR = 0
IF (N .EQ. 1) GO TO 1001
C
DO 100 I = 2, N
100 E2(I-1) = E2(I)
C
F = 0.0E0
B = 0.0E0
E2(N) = 0.0E0
C
DO 290 L = 1, N
J = 0
H = MACHEP * (ABS(D(L)) + SQRT(E2(L)))
IF (B .GT. H) GO TO 105
B = H
C = B * B
C .......... LOOK FOR SMALL SQUARED SUB-DIAGONAL ELEMENT ..........
105 DO 110 M = L, N
IF (E2(M) .LE. C) GO TO 120
C .......... E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
C THROUGH THE BOTTOM OF THE LOOP ..........
110 CONTINUE
C
120 IF (M .EQ. L) GO TO 210
130 IF (J .EQ. 30) GO TO 1000
J = J + 1
C .......... FORM SHIFT ..........
L1 = L + 1
S = SQRT(E2(L))
G = D(L)
P = (D(L1) - G) / (2.0E0 * S)
R = PYTHAG(P,1.0E0)
D(L) = S / (P + SIGN(R,P))
H = G - D(L)
C
DO 140 I = L1, N
140 D(I) = D(I) - H
C
F = F + H
C .......... RATIONAL QL TRANSFORMATION ..........
G = D(M)
IF (G .EQ. 0.0E0) G = B
H = G
S = 0.0E0
MML = M - L
C .......... FOR I=M-1 STEP -1 UNTIL L DO -- ..........
DO 200 II = 1, MML
I = M - II
P = G * H
R = P + E2(I)
E2(I+1) = S * R
S = E2(I) / R
D(I+1) = H + S * (H + D(I))
G = D(I) - E2(I) / G
IF (G .EQ. 0.0E0) G = B
H = G * P / R
200 CONTINUE
C
E2(L) = S * G
D(L) = H
C .......... GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST ..........
IF (H .EQ. 0.0E0) GO TO 210
IF (ABS(E2(L)) .LE. ABS(C/H)) GO TO 210
E2(L) = H * E2(L)
IF (E2(L) .NE. 0.0E0) GO TO 130
210 P = D(L) + F
C .......... ORDER EIGENVALUES ..........
IF (L .EQ. 1) GO TO 250
C .......... FOR I=L STEP -1 UNTIL 2 DO -- ..........
DO 230 II = 2, L
I = L + 2 - II
IF (P .GE. D(I-1)) GO TO 270
D(I) = D(I-1)
230 CONTINUE
C
250 I = 1
270 D(I) = P
290 CONTINUE
C
GO TO 1001
C .......... SET ERROR -- NO CONVERGENCE TO AN
C EIGENVALUE AFTER 30 ITERATIONS ..........
1000 IERR = L
1001 RETURN
END