OpenLibm/slatec/tred2.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

166 lines
4.9 KiB
Fortran

*DECK TRED2
SUBROUTINE TRED2 (NM, N, A, D, E, Z)
C***BEGIN PROLOGUE TRED2
C***PURPOSE Reduce a real symmetric matrix to a symmetric tridiagonal
C matrix using and accumulating orthogonal transformations.
C***LIBRARY SLATEC (EISPACK)
C***CATEGORY D4C1B1
C***TYPE SINGLE PRECISION (TRED2-S)
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
C***AUTHOR Smith, B. T., et al.
C***DESCRIPTION
C
C This subroutine is a translation of the ALGOL procedure TRED2,
C NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C This subroutine reduces a REAL SYMMETRIC matrix to a
C symmetric tridiagonal matrix using and accumulating
C orthogonal similarity transformations.
C
C On Input
C
C NM must be set to the row dimension of the two-dimensional
C array parameters, A and Z, as declared in the calling
C program dimension statement. NM is an INTEGER variable.
C
C N is the order of the matrix A. N is an INTEGER variable.
C N must be less than or equal to NM.
C
C A contains the real symmetric input matrix. Only the lower
C triangle of the matrix need be supplied. A is a two-
C dimensional REAL array, dimensioned A(NM,N).
C
C On Output
C
C D contains the diagonal elements of the symmetric tridiagonal
C matrix. D is a one-dimensional REAL array, dimensioned D(N).
C
C E contains the subdiagonal elements of the symmetric
C tridiagonal matrix in its last N-1 positions. E(1) is set
C to zero. E is a one-dimensional REAL array, dimensioned
C E(N).
C
C Z contains the orthogonal transformation matrix produced in
C the reduction. Z is a two-dimensional REAL array,
C dimensioned Z(NM,N).
C
C A and Z may coincide. If distinct, A is unaltered.
C
C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C ------------------------------------------------------------------
C
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
C system Routines - EISPACK Guide, Springer-Verlag,
C 1976.
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 760101 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE TRED2
C
INTEGER I,J,K,L,N,II,NM,JP1
REAL A(NM,*),D(*),E(*),Z(NM,*)
REAL F,G,H,HH,SCALE
C
C***FIRST EXECUTABLE STATEMENT TRED2
DO 100 I = 1, N
C
DO 100 J = 1, I
Z(I,J) = A(I,J)
100 CONTINUE
C
IF (N .EQ. 1) GO TO 320
C .......... FOR I=N STEP -1 UNTIL 2 DO -- ..........
DO 300 II = 2, N
I = N + 2 - II
L = I - 1
H = 0.0E0
SCALE = 0.0E0
IF (L .LT. 2) GO TO 130
C .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
DO 120 K = 1, L
120 SCALE = SCALE + ABS(Z(I,K))
C
IF (SCALE .NE. 0.0E0) GO TO 140
130 E(I) = Z(I,L)
GO TO 290
C
140 DO 150 K = 1, L
Z(I,K) = Z(I,K) / SCALE
H = H + Z(I,K) * Z(I,K)
150 CONTINUE
C
F = Z(I,L)
G = -SIGN(SQRT(H),F)
E(I) = SCALE * G
H = H - F * G
Z(I,L) = F - G
F = 0.0E0
C
DO 240 J = 1, L
Z(J,I) = Z(I,J) / H
G = 0.0E0
C .......... FORM ELEMENT OF A*U ..........
DO 180 K = 1, J
180 G = G + Z(J,K) * Z(I,K)
C
JP1 = J + 1
IF (L .LT. JP1) GO TO 220
C
DO 200 K = JP1, L
200 G = G + Z(K,J) * Z(I,K)
C .......... FORM ELEMENT OF P ..........
220 E(J) = G / H
F = F + E(J) * Z(I,J)
240 CONTINUE
C
HH = F / (H + H)
C .......... FORM REDUCED A ..........
DO 260 J = 1, L
F = Z(I,J)
G = E(J) - HH * F
E(J) = G
C
DO 260 K = 1, J
Z(J,K) = Z(J,K) - F * E(K) - G * Z(I,K)
260 CONTINUE
C
290 D(I) = H
300 CONTINUE
C
320 D(1) = 0.0E0
E(1) = 0.0E0
C .......... ACCUMULATION OF TRANSFORMATION MATRICES ..........
DO 500 I = 1, N
L = I - 1
IF (D(I) .EQ. 0.0E0) GO TO 380
C
DO 360 J = 1, L
G = 0.0E0
C
DO 340 K = 1, L
340 G = G + Z(I,K) * Z(K,J)
C
DO 360 K = 1, L
Z(K,J) = Z(K,J) - G * Z(K,I)
360 CONTINUE
C
380 D(I) = Z(I,I)
Z(I,I) = 1.0E0
IF (L .LT. 1) GO TO 500
C
DO 400 J = 1, L
Z(I,J) = 0.0E0
Z(J,I) = 0.0E0
400 CONTINUE
C
500 CONTINUE
C
RETURN
END