OpenLibm/slatec/zairy.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

404 lines
15 KiB
Fortran

*DECK ZAIRY
SUBROUTINE ZAIRY (ZR, ZI, ID, KODE, AIR, AII, NZ, IERR)
C***BEGIN PROLOGUE ZAIRY
C***PURPOSE Compute the Airy function Ai(z) or its derivative dAi/dz
C for complex argument z. A scaling option is available
C to help avoid underflow and overflow.
C***LIBRARY SLATEC
C***CATEGORY C10D
C***TYPE COMPLEX (CAIRY-C, ZAIRY-C)
C***KEYWORDS AIRY FUNCTION, BESSEL FUNCTION OF ORDER ONE THIRD,
C BESSEL FUNCTION OF ORDER TWO THIRDS
C***AUTHOR Amos, D. E., (SNL)
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C On KODE=1, ZAIRY computes the complex Airy function Ai(z)
C or its derivative dAi/dz on ID=0 or ID=1 respectively. On
C KODE=2, a scaling option exp(zeta)*Ai(z) or exp(zeta)*dAi/dz
C is provided to remove the exponential decay in -pi/3<arg(z)
C <pi/3 and the exponential growth in pi/3<abs(arg(z))<pi where
C zeta=(2/3)*z**(3/2).
C
C While the Airy functions Ai(z) and dAi/dz are analytic in
C the whole z-plane, the corresponding scaled functions defined
C for KODE=2 have a cut along the negative real axis.
C
C Input
C ZR - DOUBLE PRECISION real part of argument Z
C ZI - DOUBLE PRECISION imag part of argument Z
C ID - Order of derivative, ID=0 or ID=1
C KODE - A parameter to indicate the scaling option
C KODE=1 returns
C AI=Ai(z) on ID=0
C AI=dAi/dz on ID=1
C at z=Z
C =2 returns
C AI=exp(zeta)*Ai(z) on ID=0
C AI=exp(zeta)*dAi/dz on ID=1
C at z=Z where zeta=(2/3)*z**(3/2)
C
C Output
C AIR - DOUBLE PRECISION real part of result
C AII - DOUBLE PRECISION imag part of result
C NZ - Underflow indicator
C NZ=0 Normal return
C NZ=1 AI=0 due to underflow in
C -pi/3<arg(Z)<pi/3 on KODE=1
C IERR - Error flag
C IERR=0 Normal return - COMPUTATION COMPLETED
C IERR=1 Input error - NO COMPUTATION
C IERR=2 Overflow - NO COMPUTATION
C (Re(Z) too large with KODE=1)
C IERR=3 Precision warning - COMPUTATION COMPLETED
C (Result has less than half precision)
C IERR=4 Precision error - NO COMPUTATION
C (Result has no precision)
C IERR=5 Algorithmic error - NO COMPUTATION
C (Termination condition not met)
C
C *Long Description:
C
C Ai(z) and dAi/dz are computed from K Bessel functions by
C
C Ai(z) = c*sqrt(z)*K(1/3,zeta)
C dAi/dz = -c* z *K(2/3,zeta)
C c = 1/(pi*sqrt(3))
C zeta = (2/3)*z**(3/2)
C
C when abs(z)>1 and from power series when abs(z)<=1.
C
C In most complex variable computation, one must evaluate ele-
C mentary functions. When the magnitude of Z is large, losses
C of significance by argument reduction occur. Consequently, if
C the magnitude of ZETA=(2/3)*Z**(3/2) exceeds U1=SQRT(0.5/UR),
C then losses exceeding half precision are likely and an error
C flag IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is
C double precision unit roundoff limited to 18 digits precision.
C Also, if the magnitude of ZETA is larger than U2=0.5/UR, then
C all significance is lost and IERR=4. In order to use the INT
C function, ZETA must be further restricted not to exceed
C U3=I1MACH(9)=LARGEST INTEGER. Thus, the magnitude of ZETA
C must be restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2,
C and U3 are approximately 2.0E+3, 4.2E+6, 2.1E+9 in single
C precision and 4.7E+7, 2.3E+15, 2.1E+9 in double precision.
C This makes U2 limiting is single precision and U3 limiting
C in double precision. This means that the magnitude of Z
C cannot exceed approximately 3.4E+4 in single precision and
C 2.1E+6 in double precision. This also means that one can
C expect to retain, in the worst cases on 32-bit machines,
C no digits in single precision and only 6 digits in double
C precision.
C
C The approximate relative error in the magnitude of a complex
C Bessel function can be expressed as P*10**S where P=MAX(UNIT
C ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
C sents the increase in error due to argument reduction in the
C elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
C ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
C ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may
C have only absolute accuracy. This is most likely to occur
C when one component (in magnitude) is larger than the other by
C several orders of magnitude. If one component is 10**K larger
C than the other, then one can expect only MAX(ABS(LOG10(P))-K,
C 0) significant digits; or, stated another way, when K exceeds
C the exponent of P, no significant digits remain in the smaller
C component. However, the phase angle retains absolute accuracy
C because, in complex arithmetic with precision P, the smaller
C component will not (as a rule) decrease below P times the
C magnitude of the larger component. In these extreme cases,
C the principal phase angle is on the order of +P, -P, PI/2-P,
C or -PI/2+P.
C
C***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
C matical Functions, National Bureau of Standards
C Applied Mathematics Series 55, U. S. Department
C of Commerce, Tenth Printing (1972) or later.
C 2. D. E. Amos, Computation of Bessel Functions of
C Complex Argument and Large Order, Report SAND83-0643,
C Sandia National Laboratories, Albuquerque, NM, May
C 1983.
C 3. D. E. Amos, A Subroutine Package for Bessel Functions
C of a Complex Argument and Nonnegative Order, Report
C SAND85-1018, Sandia National Laboratory, Albuquerque,
C NM, May 1985.
C 4. D. E. Amos, A portable package for Bessel functions
C of a complex argument and nonnegative order, ACM
C Transactions on Mathematical Software, 12 (September
C 1986), pp. 265-273.
C
C***ROUTINES CALLED D1MACH, I1MACH, ZABS, ZACAI, ZBKNU, ZEXP, ZSQRT
C***REVISION HISTORY (YYMMDD)
C 830501 DATE WRITTEN
C 890801 REVISION DATE from Version 3.2
C 910415 Prologue converted to Version 4.0 format. (BAB)
C 920128 Category corrected. (WRB)
C 920811 Prologue revised. (DWL)
C 930122 Added ZEXP and ZSQRT to EXTERNAL statement. (RWC)
C***END PROLOGUE ZAIRY
C COMPLEX AI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
DOUBLE PRECISION AA, AD, AII, AIR, AK, ALIM, ATRM, AZ, AZ3, BK,
* CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2, DIG,
* DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR,
* S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI,
* ZEROR, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, ZABS, ALAZ, BB
INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ, I1MACH
DIMENSION CYR(1), CYI(1)
EXTERNAL ZABS, ZEXP, ZSQRT
DATA TTH, C1, C2, COEF /6.66666666666666667D-01,
* 3.55028053887817240D-01,2.58819403792806799D-01,
* 1.83776298473930683D-01/
DATA ZEROR, ZEROI, CONER, CONEI /0.0D0,0.0D0,1.0D0,0.0D0/
C***FIRST EXECUTABLE STATEMENT ZAIRY
IERR = 0
NZ=0
IF (ID.LT.0 .OR. ID.GT.1) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (IERR.NE.0) RETURN
AZ = ZABS(ZR,ZI)
TOL = MAX(D1MACH(4),1.0D-18)
FID = ID
IF (AZ.GT.1.0D0) GO TO 70
C-----------------------------------------------------------------------
C POWER SERIES FOR ABS(Z).LE.1.
C-----------------------------------------------------------------------
S1R = CONER
S1I = CONEI
S2R = CONER
S2I = CONEI
IF (AZ.LT.TOL) GO TO 170
AA = AZ*AZ
IF (AA.LT.TOL/AZ) GO TO 40
TRM1R = CONER
TRM1I = CONEI
TRM2R = CONER
TRM2I = CONEI
ATRM = 1.0D0
STR = ZR*ZR - ZI*ZI
STI = ZR*ZI + ZI*ZR
Z3R = STR*ZR - STI*ZI
Z3I = STR*ZI + STI*ZR
AZ3 = AZ*AA
AK = 2.0D0 + FID
BK = 3.0D0 - FID - FID
CK = 4.0D0 - FID
DK = 3.0D0 + FID + FID
D1 = AK*DK
D2 = BK*CK
AD = MIN(D1,D2)
AK = 24.0D0 + 9.0D0*FID
BK = 30.0D0 - 9.0D0*FID
DO 30 K=1,25
STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
TRM1R = STR
S1R = S1R + TRM1R
S1I = S1I + TRM1I
STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
TRM2R = STR
S2R = S2R + TRM2R
S2I = S2I + TRM2I
ATRM = ATRM*AZ3/AD
D1 = D1 + AK
D2 = D2 + BK
AD = MIN(D1,D2)
IF (ATRM.LT.TOL*AD) GO TO 40
AK = AK + 18.0D0
BK = BK + 18.0D0
30 CONTINUE
40 CONTINUE
IF (ID.EQ.1) GO TO 50
AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I)
AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R)
IF (KODE.EQ.1) RETURN
CALL ZSQRT(ZR, ZI, STR, STI)
ZTAR = TTH*(ZR*STR-ZI*STI)
ZTAI = TTH*(ZR*STI+ZI*STR)
CALL ZEXP(ZTAR, ZTAI, STR, STI)
PTR = AIR*STR - AII*STI
AII = AIR*STI + AII*STR
AIR = PTR
RETURN
50 CONTINUE
AIR = -S2R*C2
AII = -S2I*C2
IF (AZ.LE.TOL) GO TO 60
STR = ZR*S1R - ZI*S1I
STI = ZR*S1I + ZI*S1R
CC = C1/(1.0D0+FID)
AIR = AIR + CC*(STR*ZR-STI*ZI)
AII = AII + CC*(STR*ZI+STI*ZR)
60 CONTINUE
IF (KODE.EQ.1) RETURN
CALL ZSQRT(ZR, ZI, STR, STI)
ZTAR = TTH*(ZR*STR-ZI*STI)
ZTAI = TTH*(ZR*STI+ZI*STR)
CALL ZEXP(ZTAR, ZTAI, STR, STI)
PTR = STR*AIR - STI*AII
AII = STR*AII + STI*AIR
AIR = PTR
RETURN
C-----------------------------------------------------------------------
C CASE FOR ABS(Z).GT.1.0
C-----------------------------------------------------------------------
70 CONTINUE
FNU = (1.0D0+FID)/3.0D0
C-----------------------------------------------------------------------
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0D-18.
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C-----------------------------------------------------------------------
K1 = I1MACH(15)
K2 = I1MACH(16)
R1M5 = D1MACH(5)
K = MIN(ABS(K1),ABS(K2))
ELIM = 2.303D0*(K*R1M5-3.0D0)
K1 = I1MACH(14) - 1
AA = R1M5*K1
DIG = MIN(AA,18.0D0)
AA = AA*2.303D0
ALIM = ELIM + MAX(-AA,-41.45D0)
RL = 1.2D0*DIG + 3.0D0
ALAZ = LOG(AZ)
C-----------------------------------------------------------------------
C TEST FOR PROPER RANGE
C-----------------------------------------------------------------------
AA=0.5D0/TOL
BB=I1MACH(9)*0.5D0
AA=MIN(AA,BB)
AA=AA**TTH
IF (AZ.GT.AA) GO TO 260
AA=SQRT(AA)
IF (AZ.GT.AA) IERR=3
CALL ZSQRT(ZR, ZI, CSQR, CSQI)
ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
C-----------------------------------------------------------------------
C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
C-----------------------------------------------------------------------
IFLAG = 0
SFAC = 1.0D0
AK = ZTAI
IF (ZR.GE.0.0D0) GO TO 80
BK = ZTAR
CK = -ABS(BK)
ZTAR = CK
ZTAI = AK
80 CONTINUE
IF (ZI.NE.0.0D0) GO TO 90
IF (ZR.GT.0.0D0) GO TO 90
ZTAR = 0.0D0
ZTAI = AK
90 CONTINUE
AA = ZTAR
IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
IF (KODE.EQ.2) GO TO 100
C-----------------------------------------------------------------------
C OVERFLOW TEST
C-----------------------------------------------------------------------
IF (AA.GT.(-ALIM)) GO TO 100
AA = -AA + 0.25D0*ALAZ
IFLAG = 1
SFAC = TOL
IF (AA.GT.ELIM) GO TO 270
100 CONTINUE
C-----------------------------------------------------------------------
C CBKNU AND CACON RETURN EXP(ZTA)*K(FNU,ZTA) ON KODE=2
C-----------------------------------------------------------------------
MR = 1
IF (ZI.LT.0.0D0) MR = -1
CALL ZACAI(ZTAR, ZTAI, FNU, KODE, MR, 1, CYR, CYI, NN, RL, TOL,
* ELIM, ALIM)
IF (NN.LT.0) GO TO 280
NZ = NZ + NN
GO TO 130
110 CONTINUE
IF (KODE.EQ.2) GO TO 120
C-----------------------------------------------------------------------
C UNDERFLOW TEST
C-----------------------------------------------------------------------
IF (AA.LT.ALIM) GO TO 120
AA = -AA - 0.25D0*ALAZ
IFLAG = 2
SFAC = 1.0D0/TOL
IF (AA.LT.(-ELIM)) GO TO 210
120 CONTINUE
CALL ZBKNU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, TOL, ELIM,
* ALIM)
130 CONTINUE
S1R = CYR(1)*COEF
S1I = CYI(1)*COEF
IF (IFLAG.NE.0) GO TO 150
IF (ID.EQ.1) GO TO 140
AIR = CSQR*S1R - CSQI*S1I
AII = CSQR*S1I + CSQI*S1R
RETURN
140 CONTINUE
AIR = -(ZR*S1R-ZI*S1I)
AII = -(ZR*S1I+ZI*S1R)
RETURN
150 CONTINUE
S1R = S1R*SFAC
S1I = S1I*SFAC
IF (ID.EQ.1) GO TO 160
STR = S1R*CSQR - S1I*CSQI
S1I = S1R*CSQI + S1I*CSQR
S1R = STR
AIR = S1R/SFAC
AII = S1I/SFAC
RETURN
160 CONTINUE
STR = -(S1R*ZR-S1I*ZI)
S1I = -(S1R*ZI+S1I*ZR)
S1R = STR
AIR = S1R/SFAC
AII = S1I/SFAC
RETURN
170 CONTINUE
AA = 1.0D+3*D1MACH(1)
S1R = ZEROR
S1I = ZEROI
IF (ID.EQ.1) GO TO 190
IF (AZ.LE.AA) GO TO 180
S1R = C2*ZR
S1I = C2*ZI
180 CONTINUE
AIR = C1 - S1R
AII = -S1I
RETURN
190 CONTINUE
AIR = -C2
AII = 0.0D0
AA = SQRT(AA)
IF (AZ.LE.AA) GO TO 200
S1R = 0.5D0*(ZR*ZR-ZI*ZI)
S1I = ZR*ZI
200 CONTINUE
AIR = AIR + C1*S1R
AII = AII + C1*S1I
RETURN
210 CONTINUE
NZ = 1
AIR = ZEROR
AII = ZEROI
RETURN
270 CONTINUE
NZ = 0
IERR=2
RETURN
280 CONTINUE
IF(NN.EQ.(-1)) GO TO 270
NZ=0
IERR=5
RETURN
260 CONTINUE
IERR=4
NZ=0
RETURN
END