mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-17 02:02:30 +01:00
c977aa998f
Replace amos with slatec
377 lines
14 KiB
Fortran
377 lines
14 KiB
Fortran
*DECK ZBIRY
|
|
SUBROUTINE ZBIRY (ZR, ZI, ID, KODE, BIR, BII, IERR)
|
|
C***BEGIN PROLOGUE ZBIRY
|
|
C***PURPOSE Compute the Airy function Bi(z) or its derivative dBi/dz
|
|
C for complex argument z. A scaling option is available
|
|
C to help avoid overflow.
|
|
C***LIBRARY SLATEC
|
|
C***CATEGORY C10D
|
|
C***TYPE COMPLEX (CBIRY-C, ZBIRY-C)
|
|
C***KEYWORDS AIRY FUNCTION, BESSEL FUNCTION OF ORDER ONE THIRD,
|
|
C BESSEL FUNCTION OF ORDER TWO THIRDS
|
|
C***AUTHOR Amos, D. E., (SNL)
|
|
C***DESCRIPTION
|
|
C
|
|
C ***A DOUBLE PRECISION ROUTINE***
|
|
C On KODE=1, ZBIRY computes the complex Airy function Bi(z)
|
|
C or its derivative dBi/dz on ID=0 or ID=1 respectively.
|
|
C On KODE=2, a scaling option exp(abs(Re(zeta)))*Bi(z) or
|
|
C exp(abs(Re(zeta)))*dBi/dz is provided to remove the
|
|
C exponential behavior in both the left and right half planes
|
|
C where zeta=(2/3)*z**(3/2).
|
|
C
|
|
C The Airy functions Bi(z) and dBi/dz are analytic in the
|
|
C whole z-plane, and the scaling option does not destroy this
|
|
C property.
|
|
C
|
|
C Input
|
|
C ZR - DOUBLE PRECISION real part of argument Z
|
|
C ZI - DOUBLE PRECISION imag part of argument Z
|
|
C ID - Order of derivative, ID=0 or ID=1
|
|
C KODE - A parameter to indicate the scaling option
|
|
C KODE=1 returns
|
|
C BI=Bi(z) on ID=0
|
|
C BI=dBi/dz on ID=1
|
|
C at z=Z
|
|
C =2 returns
|
|
C BI=exp(abs(Re(zeta)))*Bi(z) on ID=0
|
|
C BI=exp(abs(Re(zeta)))*dBi/dz on ID=1
|
|
C at z=Z where zeta=(2/3)*z**(3/2)
|
|
C
|
|
C Output
|
|
C BIR - DOUBLE PRECISION real part of result
|
|
C BII - DOUBLE PRECISION imag part of result
|
|
C IERR - Error flag
|
|
C IERR=0 Normal return - COMPUTATION COMPLETED
|
|
C IERR=1 Input error - NO COMPUTATION
|
|
C IERR=2 Overflow - NO COMPUTATION
|
|
C (Re(Z) too large with KODE=1)
|
|
C IERR=3 Precision warning - COMPUTATION COMPLETED
|
|
C (Result has less than half precision)
|
|
C IERR=4 Precision error - NO COMPUTATION
|
|
C (Result has no precision)
|
|
C IERR=5 Algorithmic error - NO COMPUTATION
|
|
C (Termination condition not met)
|
|
C
|
|
C *Long Description:
|
|
C
|
|
C Bi(z) and dBi/dz are computed from I Bessel functions by
|
|
C
|
|
C Bi(z) = c*sqrt(z)*( I(-1/3,zeta) + I(1/3,zeta) )
|
|
C dBi/dz = c* z *( I(-2/3,zeta) + I(2/3,zeta) )
|
|
C c = 1/sqrt(3)
|
|
C zeta = (2/3)*z**(3/2)
|
|
C
|
|
C when abs(z)>1 and from power series when abs(z)<=1.
|
|
C
|
|
C In most complex variable computation, one must evaluate ele-
|
|
C mentary functions. When the magnitude of Z is large, losses
|
|
C of significance by argument reduction occur. Consequently, if
|
|
C the magnitude of ZETA=(2/3)*Z**(3/2) exceeds U1=SQRT(0.5/UR),
|
|
C then losses exceeding half precision are likely and an error
|
|
C flag IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is
|
|
C double precision unit roundoff limited to 18 digits precision.
|
|
C Also, if the magnitude of ZETA is larger than U2=0.5/UR, then
|
|
C all significance is lost and IERR=4. In order to use the INT
|
|
C function, ZETA must be further restricted not to exceed
|
|
C U3=I1MACH(9)=LARGEST INTEGER. Thus, the magnitude of ZETA
|
|
C must be restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2,
|
|
C and U3 are approximately 2.0E+3, 4.2E+6, 2.1E+9 in single
|
|
C precision and 4.7E+7, 2.3E+15, 2.1E+9 in double precision.
|
|
C This makes U2 limiting is single precision and U3 limiting
|
|
C in double precision. This means that the magnitude of Z
|
|
C cannot exceed approximately 3.4E+4 in single precision and
|
|
C 2.1E+6 in double precision. This also means that one can
|
|
C expect to retain, in the worst cases on 32-bit machines,
|
|
C no digits in single precision and only 6 digits in double
|
|
C precision.
|
|
C
|
|
C The approximate relative error in the magnitude of a complex
|
|
C Bessel function can be expressed as P*10**S where P=MAX(UNIT
|
|
C ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
|
|
C sents the increase in error due to argument reduction in the
|
|
C elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
|
|
C ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
|
|
C ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may
|
|
C have only absolute accuracy. This is most likely to occur
|
|
C when one component (in magnitude) is larger than the other by
|
|
C several orders of magnitude. If one component is 10**K larger
|
|
C than the other, then one can expect only MAX(ABS(LOG10(P))-K,
|
|
C 0) significant digits; or, stated another way, when K exceeds
|
|
C the exponent of P, no significant digits remain in the smaller
|
|
C component. However, the phase angle retains absolute accuracy
|
|
C because, in complex arithmetic with precision P, the smaller
|
|
C component will not (as a rule) decrease below P times the
|
|
C magnitude of the larger component. In these extreme cases,
|
|
C the principal phase angle is on the order of +P, -P, PI/2-P,
|
|
C or -PI/2+P.
|
|
C
|
|
C***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
|
|
C matical Functions, National Bureau of Standards
|
|
C Applied Mathematics Series 55, U. S. Department
|
|
C of Commerce, Tenth Printing (1972) or later.
|
|
C 2. D. E. Amos, Computation of Bessel Functions of
|
|
C Complex Argument and Large Order, Report SAND83-0643,
|
|
C Sandia National Laboratories, Albuquerque, NM, May
|
|
C 1983.
|
|
C 3. D. E. Amos, A Subroutine Package for Bessel Functions
|
|
C of a Complex Argument and Nonnegative Order, Report
|
|
C SAND85-1018, Sandia National Laboratory, Albuquerque,
|
|
C NM, May 1985.
|
|
C 4. D. E. Amos, A portable package for Bessel functions
|
|
C of a complex argument and nonnegative order, ACM
|
|
C Transactions on Mathematical Software, 12 (September
|
|
C 1986), pp. 265-273.
|
|
C
|
|
C***ROUTINES CALLED D1MACH, I1MACH, ZABS, ZBINU, ZDIV, ZSQRT
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 830501 DATE WRITTEN
|
|
C 890801 REVISION DATE from Version 3.2
|
|
C 910415 Prologue converted to Version 4.0 format. (BAB)
|
|
C 920128 Category corrected. (WRB)
|
|
C 920811 Prologue revised. (DWL)
|
|
C 930122 Added ZSQRT to EXTERNAL statement. (RWC)
|
|
C***END PROLOGUE ZBIRY
|
|
C COMPLEX BI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
|
|
DOUBLE PRECISION AA, AD, AK, ALIM, ATRM, AZ, AZ3, BB, BII, BIR,
|
|
* BK, CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2,
|
|
* DIG, DK, D1, D2, EAA, ELIM, FID, FMR, FNU, FNUL, PI, RL, R1M5,
|
|
* SFAC, STI, STR, S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I,
|
|
* TRM2R, TTH, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, ZABS
|
|
INTEGER ID, IERR, K, KODE, K1, K2, NZ, I1MACH
|
|
DIMENSION CYR(2), CYI(2)
|
|
EXTERNAL ZABS, ZSQRT
|
|
DATA TTH, C1, C2, COEF, PI /6.66666666666666667D-01,
|
|
* 6.14926627446000736D-01,4.48288357353826359D-01,
|
|
* 5.77350269189625765D-01,3.14159265358979324D+00/
|
|
DATA CONER, CONEI /1.0D0,0.0D0/
|
|
C***FIRST EXECUTABLE STATEMENT ZBIRY
|
|
IERR = 0
|
|
NZ=0
|
|
IF (ID.LT.0 .OR. ID.GT.1) IERR=1
|
|
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
|
|
IF (IERR.NE.0) RETURN
|
|
AZ = ZABS(ZR,ZI)
|
|
TOL = MAX(D1MACH(4),1.0D-18)
|
|
FID = ID
|
|
IF (AZ.GT.1.0E0) GO TO 70
|
|
C-----------------------------------------------------------------------
|
|
C POWER SERIES FOR ABS(Z).LE.1.
|
|
C-----------------------------------------------------------------------
|
|
S1R = CONER
|
|
S1I = CONEI
|
|
S2R = CONER
|
|
S2I = CONEI
|
|
IF (AZ.LT.TOL) GO TO 130
|
|
AA = AZ*AZ
|
|
IF (AA.LT.TOL/AZ) GO TO 40
|
|
TRM1R = CONER
|
|
TRM1I = CONEI
|
|
TRM2R = CONER
|
|
TRM2I = CONEI
|
|
ATRM = 1.0D0
|
|
STR = ZR*ZR - ZI*ZI
|
|
STI = ZR*ZI + ZI*ZR
|
|
Z3R = STR*ZR - STI*ZI
|
|
Z3I = STR*ZI + STI*ZR
|
|
AZ3 = AZ*AA
|
|
AK = 2.0D0 + FID
|
|
BK = 3.0D0 - FID - FID
|
|
CK = 4.0D0 - FID
|
|
DK = 3.0D0 + FID + FID
|
|
D1 = AK*DK
|
|
D2 = BK*CK
|
|
AD = MIN(D1,D2)
|
|
AK = 24.0D0 + 9.0D0*FID
|
|
BK = 30.0D0 - 9.0D0*FID
|
|
DO 30 K=1,25
|
|
STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
|
|
TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
|
|
TRM1R = STR
|
|
S1R = S1R + TRM1R
|
|
S1I = S1I + TRM1I
|
|
STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
|
|
TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
|
|
TRM2R = STR
|
|
S2R = S2R + TRM2R
|
|
S2I = S2I + TRM2I
|
|
ATRM = ATRM*AZ3/AD
|
|
D1 = D1 + AK
|
|
D2 = D2 + BK
|
|
AD = MIN(D1,D2)
|
|
IF (ATRM.LT.TOL*AD) GO TO 40
|
|
AK = AK + 18.0D0
|
|
BK = BK + 18.0D0
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
IF (ID.EQ.1) GO TO 50
|
|
BIR = C1*S1R + C2*(ZR*S2R-ZI*S2I)
|
|
BII = C1*S1I + C2*(ZR*S2I+ZI*S2R)
|
|
IF (KODE.EQ.1) RETURN
|
|
CALL ZSQRT(ZR, ZI, STR, STI)
|
|
ZTAR = TTH*(ZR*STR-ZI*STI)
|
|
ZTAI = TTH*(ZR*STI+ZI*STR)
|
|
AA = ZTAR
|
|
AA = -ABS(AA)
|
|
EAA = EXP(AA)
|
|
BIR = BIR*EAA
|
|
BII = BII*EAA
|
|
RETURN
|
|
50 CONTINUE
|
|
BIR = S2R*C2
|
|
BII = S2I*C2
|
|
IF (AZ.LE.TOL) GO TO 60
|
|
CC = C1/(1.0D0+FID)
|
|
STR = S1R*ZR - S1I*ZI
|
|
STI = S1R*ZI + S1I*ZR
|
|
BIR = BIR + CC*(STR*ZR-STI*ZI)
|
|
BII = BII + CC*(STR*ZI+STI*ZR)
|
|
60 CONTINUE
|
|
IF (KODE.EQ.1) RETURN
|
|
CALL ZSQRT(ZR, ZI, STR, STI)
|
|
ZTAR = TTH*(ZR*STR-ZI*STI)
|
|
ZTAI = TTH*(ZR*STI+ZI*STR)
|
|
AA = ZTAR
|
|
AA = -ABS(AA)
|
|
EAA = EXP(AA)
|
|
BIR = BIR*EAA
|
|
BII = BII*EAA
|
|
RETURN
|
|
C-----------------------------------------------------------------------
|
|
C CASE FOR ABS(Z).GT.1.0
|
|
C-----------------------------------------------------------------------
|
|
70 CONTINUE
|
|
FNU = (1.0D0+FID)/3.0D0
|
|
C-----------------------------------------------------------------------
|
|
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
|
|
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
|
|
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
|
|
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
|
|
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
|
|
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
|
|
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
|
|
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
|
|
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
|
|
C-----------------------------------------------------------------------
|
|
K1 = I1MACH(15)
|
|
K2 = I1MACH(16)
|
|
R1M5 = D1MACH(5)
|
|
K = MIN(ABS(K1),ABS(K2))
|
|
ELIM = 2.303D0*(K*R1M5-3.0D0)
|
|
K1 = I1MACH(14) - 1
|
|
AA = R1M5*K1
|
|
DIG = MIN(AA,18.0D0)
|
|
AA = AA*2.303D0
|
|
ALIM = ELIM + MAX(-AA,-41.45D0)
|
|
RL = 1.2D0*DIG + 3.0D0
|
|
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
|
|
C-----------------------------------------------------------------------
|
|
C TEST FOR RANGE
|
|
C-----------------------------------------------------------------------
|
|
AA=0.5D0/TOL
|
|
BB=I1MACH(9)*0.5D0
|
|
AA=MIN(AA,BB)
|
|
AA=AA**TTH
|
|
IF (AZ.GT.AA) GO TO 260
|
|
AA=SQRT(AA)
|
|
IF (AZ.GT.AA) IERR=3
|
|
CALL ZSQRT(ZR, ZI, CSQR, CSQI)
|
|
ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
|
|
ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
|
|
C-----------------------------------------------------------------------
|
|
C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
|
|
C-----------------------------------------------------------------------
|
|
SFAC = 1.0D0
|
|
AK = ZTAI
|
|
IF (ZR.GE.0.0D0) GO TO 80
|
|
BK = ZTAR
|
|
CK = -ABS(BK)
|
|
ZTAR = CK
|
|
ZTAI = AK
|
|
80 CONTINUE
|
|
IF (ZI.NE.0.0D0 .OR. ZR.GT.0.0D0) GO TO 90
|
|
ZTAR = 0.0D0
|
|
ZTAI = AK
|
|
90 CONTINUE
|
|
AA = ZTAR
|
|
IF (KODE.EQ.2) GO TO 100
|
|
C-----------------------------------------------------------------------
|
|
C OVERFLOW TEST
|
|
C-----------------------------------------------------------------------
|
|
BB = ABS(AA)
|
|
IF (BB.LT.ALIM) GO TO 100
|
|
BB = BB + 0.25D0*LOG(AZ)
|
|
SFAC = TOL
|
|
IF (BB.GT.ELIM) GO TO 190
|
|
100 CONTINUE
|
|
FMR = 0.0D0
|
|
IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
|
|
FMR = PI
|
|
IF (ZI.LT.0.0D0) FMR = -PI
|
|
ZTAR = -ZTAR
|
|
ZTAI = -ZTAI
|
|
110 CONTINUE
|
|
C-----------------------------------------------------------------------
|
|
C AA=FACTOR FOR ANALYTIC CONTINUATION OF I(FNU,ZTA)
|
|
C KODE=2 RETURNS EXP(-ABS(XZTA))*I(FNU,ZTA) FROM CBESI
|
|
C-----------------------------------------------------------------------
|
|
CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, RL, FNUL, TOL,
|
|
* ELIM, ALIM)
|
|
IF (NZ.LT.0) GO TO 200
|
|
AA = FMR*FNU
|
|
Z3R = SFAC
|
|
STR = COS(AA)
|
|
STI = SIN(AA)
|
|
S1R = (STR*CYR(1)-STI*CYI(1))*Z3R
|
|
S1I = (STR*CYI(1)+STI*CYR(1))*Z3R
|
|
FNU = (2.0D0-FID)/3.0D0
|
|
CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 2, CYR, CYI, NZ, RL, FNUL, TOL,
|
|
* ELIM, ALIM)
|
|
CYR(1) = CYR(1)*Z3R
|
|
CYI(1) = CYI(1)*Z3R
|
|
CYR(2) = CYR(2)*Z3R
|
|
CYI(2) = CYI(2)*Z3R
|
|
C-----------------------------------------------------------------------
|
|
C BACKWARD RECUR ONE STEP FOR ORDERS -1/3 OR -2/3
|
|
C-----------------------------------------------------------------------
|
|
CALL ZDIV(CYR(1), CYI(1), ZTAR, ZTAI, STR, STI)
|
|
S2R = (FNU+FNU)*STR + CYR(2)
|
|
S2I = (FNU+FNU)*STI + CYI(2)
|
|
AA = FMR*(FNU-1.0D0)
|
|
STR = COS(AA)
|
|
STI = SIN(AA)
|
|
S1R = COEF*(S1R+S2R*STR-S2I*STI)
|
|
S1I = COEF*(S1I+S2R*STI+S2I*STR)
|
|
IF (ID.EQ.1) GO TO 120
|
|
STR = CSQR*S1R - CSQI*S1I
|
|
S1I = CSQR*S1I + CSQI*S1R
|
|
S1R = STR
|
|
BIR = S1R/SFAC
|
|
BII = S1I/SFAC
|
|
RETURN
|
|
120 CONTINUE
|
|
STR = ZR*S1R - ZI*S1I
|
|
S1I = ZR*S1I + ZI*S1R
|
|
S1R = STR
|
|
BIR = S1R/SFAC
|
|
BII = S1I/SFAC
|
|
RETURN
|
|
130 CONTINUE
|
|
AA = C1*(1.0D0-FID) + FID*C2
|
|
BIR = AA
|
|
BII = 0.0D0
|
|
RETURN
|
|
190 CONTINUE
|
|
IERR=2
|
|
NZ=0
|
|
RETURN
|
|
200 CONTINUE
|
|
IF(NZ.EQ.(-1)) GO TO 190
|
|
NZ=0
|
|
IERR=5
|
|
RETURN
|
|
260 CONTINUE
|
|
IERR=4
|
|
NZ=0
|
|
RETURN
|
|
END
|